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We present a linear rational pseudospectral (collocation) method with preassigned poles
for solving boundary value problems. It consists in attaching poles to the trial polynomial so
as to make it a rational interpolant. Its convergence is proved by transforming the problem
into an associated boundary value problem. Numerical examples demonstrate that the rational
pseudospectral method is often more efficient than the polynomial method.

Keywords: pseudospectral method, linear rational collocation, preassigned poles

AMS subject classification: 65L10, 41A20, 65D05

1. Introduction: the problem and the method

The present work will address the solution of linear two-point boundary value prob-
lems (BVPs) of the form

T [u](x) := u′′(x)+ p(x)u′(x)+ q(x)u(x) = f (x), x ∈ ]−1, 1[,
u(−1) = ul, u(1) = ur,

(1)

by pseudospectral (or spectral collocation) methods. Spectral methods have been found
attractive for solving BVPs as they converge faster than any negative power of the num-
ber of points when all arising functions are infinitely differentiable, see, for example,
[10,11,14]: they are “spectrally accurate”, therefore often more efficient than finite dif-
ference of finite element methods, which converge only at an algebraic rate.

Here we are interested in developing a method that improves upon the pseudospec-
tral (polynomial collocation) method by attaching poles to the trial function so as to
make it a rational interpolant. This method is useful when the location of some or all
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of the poles of the solution of the BVP may be determined from the problem, as in
equations of Fuchsian type (see [16, p. 370]) or when the BVP is stiff.

The first two authors have already applied rational techniques to partial differen-
tial equations [2] and to boundary value problems [7]. However, the (linear) rational
pseudospectral method developed in those articles did not take into account the location
of the poles of the solution.

Let us first give and alternate presentation of the linear rational pseudospectral
method in barycentric form as applied to (1):

1. Choose collocation points xk, k = 0(1)N, and a fixed denominator given in its
barycentric form of the first kind [18, p. 106] with respect to the xk:

d(x) =
N∏
j=0

(x − xj )

N∑
k=0

βk

x − xk
. (2)

The weights βk determine Lagrange fundamental rational functions

L
(β)

k (x) := βk/(x − xk)∑N
i=0 βi/(x − xi)

,

with L(β)k (xj ) = δjk, where δjk denotes the Kronecker symbol. The L(β)k span the
linear space R(β) of the rational interpolants

∑N
k=0 fkL

(β)

k (x) interpolating values fk
in the xk. R(β) ⊂ RN,N , where Rs,t denotes the set of all rational functions with
numerator degree less or equal s and denominator degree less or equal t .

2. Replace the solution u in (1) with a rational function in R(β) interpolating between
the collocation points xk, k = 0(1)N ,

uN(x) :=
N∑
k=0

ũkL
(β)

k (x). (3)

Here we have ũ0 = u�, ũN = ur and the N−1 approximations ũk to the u(xk) remain
to be determined.

3. Collocate at the same points xj , which yields the system of linear equations

N∑
k=0

ũkL
(β)′′
k (xj )+ p(xj )

N∑
k=0

ũkL
(β)′
k (xj )+ q(xj )

N∑
k=0

ũkL
(β)

k (xj ) = f (xj ),

j = 1(1)N − 1,

or in closed form

(T uN)(xj ) = f (xj ), j = 1(1)N − 1. (4)
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(4) can also be written in matrix form Aũ = f, where A := D(2) + PD(1) + Q and

ũ := [ũ1, ũ2, . . . , ũN−1]T,

D(1) = (D
(1)
jk ), D

(1)
jk := L

(β)′
k (xj ),

D(2) = (D
(2)
jk ), D

(2)
jk := L

(β)′′
k (xj ),

P := diag(p(xj )), Q := diag(q(xj )),

f := [
f (xj )− ur

(
D
(2)
j0 + p(xj )D

(1)
j0

) − ul
(
D
(2)
jN + p(xj )D

(1)
jN

)]T
,

j, k = 1(1)N − 1.

(3) is the barycentric form of the interpolating rational function uN :

uN(x) =
∑N

k=0(βk/(x − xk))ũk∑N
k=0 βk/(x − xk)

. (5)

The polynomial interpolant is the special case in which the weights are given (up to a
constant) by

wk := 1∏N
j=0,j �=k(xk − xj )

, k = 0(1)N,

see [15]. For equidistant points, the wk’s are proportional to (−1)k
(
N

k

)
[15], for Cheby-

shev points of the second kind cos(jπ/N), j = 0(1)N , they were found by Salzer [20]
to be, again up to a constant,

(−1)kδk, δk :=



1

2
, k = 0 or k = N,

1, otherwise.
(6)

The differentiation matrices D(1) and D(2) can be given by the formulae (see [1]
or [2])

D
(1)
jk =




βk/βj

xj − xk
, j �= k,

−
N∑

i=0, i �=j
D
(1)
j i , j = k,

(7)

and

D
(2)
jk =




2D(1)
jk

(
D
(1)
jj − 1

xj − xk

)
j �= k,

−
N∑

i=0,i �=j
D
(2)
j i , j = k.

(8)

A simple proof is given in [6]. In order to alleviate roundoff, formulae (7) and (8) should
be used in the calculation of derivatives in the polynomial case as well, see [1].
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In the first section, we describe the linear rational collocation method with pre-
assigned poles and recall some useful results on the corresponding interpolation. In
section 2, we show that the rational collocation method is equivalent to an associated
polynomial collocation method and that it is therefore spectrally accurate if the solu-
tion itself has the prescribed poles. Numerical results with the Chebyshev rational and
polynomial collocation methods are discussed in the last section.

2. Determination of the barycentric weights

The linear rational collocation method with preassigned poles addressed here con-
sists in choosing the βk in (2) in order that the denominator has preassigned zeros. Let
us write uN as

uN(x) := vN(x)

d(x)
=

∑N
k=0 ṽkLk(x)

d(x)
, Lk(x) = wk/(x − xk)∑n

i=0 wi/(x − xi)
; (9)

vN is the polynomial of degree at most N interpolating the values ũkd(xk), k = 0(1)N ,
and the Lk are the Lagrange fundamental polynomials.

In the remainder of this section we recall some results of [5] about the rational
interpolant (9). That work addressed the more general problem of computing rational
interpolants with, say, ν preassigned poles, that is of finding

r = p

q
∈ Rm,n+ν, m+ n = N, ν � N − n, (10)

such that

r(xk) = ũk, k = 0(1)N. (11)

Here we are concerned with the case where all the poles are preassigned, i.e., n = 0.
Let us denote the poles to be preassigned by zj , j = 1(1)P , and their respective

multiplicities by νj (ν = ∑P
j=1 νj � N), with all the zj different from the interpolating

points xk . One therefore has d(x) = a
∏P

j=1(x − zj )
νj , a ∈ C. Writing d as the poly-

nomial interpolating itself between the xk , the corresponding βk are easily obtained [8]
by multiplying the weights wk of the polynomial interpolant by a multiple of

dk := d(xk) = a

P∏
j=1

(xk − zj )
νj , k = 0(1)N,

to get

uN(x) :=
∑N

k=0(dkwk/(x − xk))ũk∑N
k=0 dkwk/(x − xk)

, (12)

the barycentric form of the rational interpolant with P preassigned poles (when such an
interpolant exists [8], otherwise some or all of the poles are absent). Dividing all the dk’s
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by
∏P

j=1 zj , one sees that the polynomial interpolant is the case when all the zj are at
infinity.

The weights dkwk (= βk) in (12) do not depend on the interpolated function: the
rational interpolation process is linear.

3. Convergence

The results obtained in [7] could be used to prove the convergence of the linear
rational collocation method with preassigned poles. A different approach consists in
showing that the linear rational collocation method applied to the BVP (1) is equivalent
to a polynomial collocation method applied to an associated boundary value problem.
One can then apply the results presented in [13] or [22] (for example) to the equivalent
associated polynomial collocation method. Before proceeding in this direction, let us
recall some facts.

The authors of [17] have studied a rational collocation method applied to the gen-
eral linear differential equation

T [u](x) =
m∑
k=0

ek(x)u
(k)(x) = f (x), x ∈ [a, b], (13)

with the m linearly independent boundary conditions

m−1∑
k=0

(
αiku

(k)(a)+ βiku
(k)(b)

) = 0, αi,k, βi,k ∈ R, 1 � i � m. (14)

They have shown that a rational collocation method with a trial function such as uN
in (3) or (9) is equivalent to a polynomial collocation method applied to an associated
boundary value problem (ABVP) involving the denominator of the trial rational.

Before stating the main result of [17], we recall some notations. Consider the
collocation points xk on [a, b] with a = x0 < x1 < · · · < xN = b, and let PN be the
space of polynomials of degree up toN over [a, b]. We denote by RN,ν the set of rational
functions in RN,ν satisfying the boundary conditions (14), and we set PN := RN,0.

The main result of [17] then is the following.

Theorem 1. Let d be a polynomial of degree ν and T [u](x) = ∑m
k=0 ek(x)u

(k)(x) be a
linear differential operator of order m. Then there exist a finite number of constants α′

ik,
β ′
ik , 1 � i � m, such that the collocation matrix on RN,ν for the problem (13)–(14) is

equivalent to the collocation matrix on PN for the problem

Td [v](x) :=
m∑
k=0

fk(x)v
(k)(x) = f (x)d(x), (15)

m−1∑
k=0

α′
ikv

(k)(a)+ β ′
ikv

(k)(b) = 0, 1 � i � m, (16)
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when the same collocation points xj , j = 0(1)N , are used in both BVPs. The coeffi-
cients fk and the constants α′

ik, β
′
ik depend on d and can be computed iteratively.

Indeed, the fk’s can be computed as

fk−1(x)= −d ′(x)
d(x)

kfk(x)− d ′′(x)
d(x)

k(k + 1)

2! fk+1(x)− · · ·

− dν(x)

d(x)

k(k + 1) · · · (ν + k − 1)

k! fk+ν−1(x)+ ek−1(x),

k = m,m− 1, . . . , 1,

fm(x)= em(x), fm+1(x) = fm+2(x) = · · · = fm+ν+1(x) = 0.

The constants α′
ik , β

′
ik may be computed by iterative formulae as well, see [17].

The previous result clearly shows that, from a theoretical point of view, solving the
BVP (13)–(14) with rational collocation is equivalent to applying polynomial collocation
to the ABVP (15)–(16).

Corollary 1. Let the solution u of (13)–(14) be meromorphic with poles at z1, . . . , zP .
Then the linear rational collocation method with trial function (12) converges exponen-
tially toward u, and as fast as the polynomial collocation solution of the ABVP (15)–(16).

Proof. One simply has to transform the problem (13)–(14) into the associated problem
(15)–(16) and to apply results of [10,13,22]. �

The idea of transforming the problem into an associated one was also used in [2]
for proving the convergence of the rational collocation method for partial differential
equations.

4. Numerical examples

In this section we present three numerical examples for the sake of comparing the
Chebyshev rational pseudospectral method with preassigned poles with the Chebyshev
polynomial pseudospectral method. All our computations where done with Matlab 5.2.1
on a Macintosh G3. We use the same points xk := cos(kπ/N), k = 0(1)N , throughout.

The linear systems (4) were solved by Gaussian elimination. The tables display the
maximum absolute error Eabs at the collocation points.

4.1. Example 1

The first example,

u′′(x)− u′(x)
(

1 − 1

x − 0.01

)
− u(x)

(x − 0.01)2
= 0,

u(−1) = − 1

1.01e
, u(0) = −100,
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Table 1
Maximum absolute error of the numerical solutions in example 1.

N Chebyshev collocation Rational collocation

5 7.810 · 100 2.180 · 10−6

10 2.227 · 100 3.020 · 10−14

20 5.703 · 10−1 4.400 · 10−12

40 1.600 · 10−2 1.454 · 10−11

80 3.087 · 10−6 5.444 · 10−11

Table 2
Condition number of the matrix A of example 1.

N Chebyshev collocation Rational collocation

5 1.557 · 101 1.161 · 101

10 1.844 · 102 1.640 · 102

20 2.320 · 103 2.486 · 103

40 3.415 · 104 3.763 · 104

80 5.448 · 105 5.620 · 105

is a slightly modified version of a problem given in [17]. The differential equation is of
Fuchsian type and the theory locates a pole at 0.01, see [16, p. 370]. In fact, the exact
solution is u(x) = ex/(x − 0.01) and it becomes steeper and steeper when approaching
the right boundary.

Here, the polynomial d (of degree 1) of theorem 1 is given by d(x) = x−0.01 and
the (associated) differential expression Td[v] by

v′′(x)− v′(x)
(

1 + 1

x − 0.01

)
+ v(x)

x − 0.01
= 0,

v(−1) = 1

e
, v(0) = 1.

The exact solution is now v(x) = ex . Since this solution has no singularities in the finite
complex plane, the convergence rate is faster than exponential, or super-geometric, as
defined in [10]. This very rapid convergence is confirmed in table 1.

In table 1, we display Eabs for the rational collocation method with the preassigned
pole z = 0.01 and compare it to the Chebyshev collocation method. Taking advantage of
the knowledge of the location of the pole improves markedly upon the classical Cheby-
shev collocation method: for 10 points, for example, the absolute error improves by 14
powers of 10.

The error with the rational collocation method increases from 3·10−14 withN = 10
to 5 · 10−11 with N = 80. The large condition number of the matrix A, as displayed in
table 2, is probably responsible for this loss of precision [19, p. 37]. Notice however that
the condition number is only marginally more related to the rational error than to the
polynomial one (see [4] or [21] for a discussion of this relation for the polynomial case).
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Table 3
Maximum absolute error of the numerical solutions in example 2 with a = 100, m = 10.

N Chebyshev collocation Rational collocation

5 1.188 · 10−2 1.174 · 10−2

10 2.288 · 101 2.060 · 10−1

20 7.657 · 10−3 1.637 · 10−7

40 8.128 · 10−4 3.574·10−15

80 8.489 · 10−6 7.772·10−15

4.2. Example 2

Our second example was chosen as

u′′(x)+ 4ax

1 + ax2
u′(x)+

(
m2 + 2a

1 + ax2

)
u(x) = 0, a > 0,

u(−1) = −sin(m)

1 + a
, u(1) = sin(m)

1 + a
,

and its solution is

u(x) = sin(mx)

1 + ax2
.

u has the two poles

z1,2 = ±i

√
1

a
,

which is not too surprising in view of the differential equation. Since the solution has
steep derivatives near 0, the polynomial collocation method will not give good results for
small N as the points are clustered around the extremities (−1 and 1). We may expect
better results from the rational collocation method with the two preassigned poles.

In table 3, we see that for a = 100 and m = 10 the linear rational pseudospectral
method with the two preassigned poles behaves better than the polynomial method. For
N = 40, for example, the rational solution provides 11 extra powers of 10. The reader
will have noticed that the results of table 3 are worse with N = 10 than with N = 5.
This arises from the fact that the the maximum absolute error Eabs is computed at the
collocation points only. With 6 points (N = 5) the solver is given less information on
the singular behaviour of p and q than with 11 points.

4.3. Example 3

The third example is a boundary layer problem borrowed from [23],

εu′′(x)+ (1 + ε)u′(x)+ u(x) = 0,
u(0) = 0, u(1) = 1.

(17)
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The exact solution is

u(x) = e−x − e−x/ε

e−1 − e−1/ε
;

for small ε, it has a boundary layer at x = 0. Here the differential equation does not
provide information about where to locate the poles.

Weideman in [23] has performed a boundary layer analysis to find where to pre-
assign the poles for a rational approximation. A boundary layer analysis consists in
finding two approximate solutions, that is an outer solution that is valid in the region
where the solution is slowly varying and an inner solution in the boundary layer. For the
problem (17), these solutions are given by

uin(x) = e − e1−x/ε, uout(x) = e1−x.

Weideman then applies the (5, 5) Padé approximation to the exponential and makes the
change of variable x ↔ 1 − x/ε to obtain the Padé approximation to uin.

For ε = 0.001 he gives the five poles

z1 ≈ −0.0063, z2,3 ≈ −0.0057 ± 0.0035 i, z4,5 ≈ −0.0036 ± 0.0071 i.

For more information on boundary layer analysis, see [3].
We have used these same points as preassigned poles in our method. The max-

imum abolute error Eabs is displayed in table 4, again for the Chebyshev collocation
method and the rational method. We see that, for N = 80, the latter improves upon the
polynomial method by three powers of 10.

Our rational method is obviously a good alternative to other methods when the lo-
cation of the poles is known or may be guessed at the onset. Compared to the rational
method presented in [23] it does not involve any extra computation for finding particular
collocation points. (In fact, with Chebyshev points the method of [23] becomes math-
ematically equivalent to the one suggested here.) However, the specific points used in
[23] are superior, as they are spaced more densely at the steep gradient(s) and the addi-
tional work to compute them is compensated by the gain in accuracy, see [12] for a more
detailed analysis.

Table 4
Maximum absolute error of the numerical solutions in example 3

with ε = 0.001.

N Chebyshev collocation Rational collocation

5 2.132 · 100 5.066 · 100

10 7.375 · 100 2.745 · 10−3

20 5.802 · 100 4.451 · 10−3

40 3.680 · 10−1 4.634 · 10−4

80 1.252 · 10−3 1.586 · 10−6



62 R. Baltensperger et al. / Rational pseudospectral method

5. Conclusion

In the present work we have presented a linear rational pseudospectral method
with preassigned poles. For its implementation, one simply has to alter the polyno-
mial pseudospectral method (based, for example, on Chebyshev points of the second
kind) by modifying the weights in the differentiation matrices in accordance with the
poles. We have shown that the theoretical convergence results for the classical poly-
nomial pseudospectral method can be used in the rational setting by considering an
associated boundary value problem. Finally, we have applied this rational method to
three different problems and we have seen that it is often much more efficient than the
corresponding polynomial pseudospectral method.

Our way of attaching poles to the polynomial trial function can in principle be
used also with nonlinear problems, for which the collocation method is ideally suited
(see [14, p. 130]). There, however, determining the precise location of poles could be
impossible. One would have to deduce them either from the polynomial solution or by a
WKB analysis (see [3, p. 463]), or, better, to successively optimize them as in [9].

Higher-dimensional problems can be tackeled as well in the tensor product case,
e.g., when u(x, y) = ∑

i vi(x)wi(y). The formulae for two-dimensional rational inter-
polants with prescribed poles are given in [9]. However, it should not be concealed that
the theory of functions of a single complex variable does not generalize straighforwardly
to arbitrary functions of several variables.
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