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Abstract.

We consider the version of the pseudospectral method for solving boundary value
problems which replaces the differential operator with a matrix constructed from the
elementary differentiation matrices whose elements are the derivatives of the Lagrange
fundamental polynomials at the collocation points. The iterative solution of the resulting
system of equations then requires the recurrent application of that differentiation matrix.
Since global polynomial interpolation on the interval only gives useful approximants for
points which accumulate in the vicinity of the extremities, the matrix is ill-conditioned.
To reduce this drawback, we use Kosloff and Tal-Ezer’s suggestion to shift the colloca-
tion points closer to equidistant by a conformal map. However, instead of applying their
change of variable setting, we extend to stationary equations the linear rational collo-
cation method introduced in former work on partial differential equations. Numerically
about as efficient, this does not require any new coding if one starts from an efficient
program for the polynomial differentiation matrices.
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1 The polynomial and the linear rational collocation methods.

Object of the present work is the numerical solution of linear two-point boundary
value problems (BVPs)

(Tu)(x) := u′′(x) + p(x)u′(x) + q(x)u(x) = f(x), x ∈ (−1, 1),(1.1)
u(−1) = u�, u(1) = ur,

by so-called pseudospectral (or spectral collocation) methods. A classical polynomial
version of the latter consists of the following two steps:

1. Replace the solution in (1.1) with the polynomial interpolating between n+1
well chosen distinct points (nodes) x0, x1, . . . , xn, written in its Lagrangian form

un(x) :=
n∑

j=0

ũj
j(x), 
j(x) :=

∏
k �=j(x− xk)∏
k �=j(xj − xk)

.(1.2)
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If one chooses ũ0 = ur, ũn = u�, the n−1 unknowns ũj for j = 1, . . . , n−1 remain
to be determined.

2. Collocate at the same points, which yields the system of linear equations

(Tun)(xi) = f(xi), i = 1, . . . , n− 1,(1.3)

for the remaining ũj ’s. If all functions arising in (1.1) are analytic (i.e., holomor-
phic) then the convergence of un toward u as n → ∞ is spectral, i.e., faster than
any negative power of n.

In preparation for the introduction of the linear rational collocation method, as
presented in [6] for time evolution problems, we rewrite the 
j’s as


j(x) =
λj

x− xj

/
n∑

k=0

λk

x− xk
, j = 0, 1, . . . , n,(1.4)

λj := 1
/ ∏

k �=j

(xj − xk).

Then (1.2) becomes the barycentric form [22] of the polynomial un,

un(x) =
n∑

j=0

λj

x− xj
ũj

/
n∑

j=0

λj

x− xj
.

One of the many advantages of this representation is the fact that common factors
in the so-called weights λj can be cancelled: for instance, simplified weights for
Chebyshev points of the second kind cosφj , φj := j π

n , are given by

λ∗j = (−1)jδj , δj :=
{
1/2, j = 0 or j = n,
1, otherwise.

(1.5)

Since polynomial interpolation for arbitrary points is divergent or ill-conditioned,
the xj ’s cannot be chosen at will. In practice they are projections onto the diameter
[−1, 1] of points on the circle that are either equidistant (which yields Chebyshev
points) or nearly equidistant (e.g., Legendre points).
It has however been shown in [4] that the points can be conformally moved from

their favorable position without significant loss in the precision of approximation if
rational is substituted for polynomial interpolation. (On the other hand, numerical
experiments seem to show that, in general, direct polynomial interpolation between
the shifted points is not very accurate.) In the barycentric setting this simply
happens by replacing the weights λj in (1.4) with other numbers [β0, . . . , βn]T =: β,
still one per node. This means replacing the (linear) polynomial space spanned by
the Lagrange fundamental polynomials (1.4) with the linear space R(β) spanned
by the fundamental rational functions



(β)
j (x) :=

βj

x− xj

/
n∑

k=0

βk

x− xk
, j = 0, 1, . . . , n.(1.6)
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Let Eρ, ρ > 1, denote the ellipse with foci at ±1 and with the sum of its axes
equal to 2ρ, and let Eρ be the interior of Eρ. The following result holds [4].

Theorem 1.1. Let D1, D2 be two domains of C containing J = [−1, 1], respec-
tively I (∈ IR), let g be a conformal map D1 → D2 such that g(J) = I, and f be
a function D2 → C such that the composition f ◦ g : D1 → C is analytic inside
and on Eρ (⊂ D1). Let r(x) :=

∑n
j=0 f(xj)


(β)
j (x), x = g(y), be the rational func-

tion with weights (1.5) interpolating f between the transformed Chebyshev points
xj := g(yj). Then, for x ∈ [−1, 1], |f(x)− r(x)| = O(ρ−n).
We thus have exponential convergence in n.
Remark 1.1. A careful study of the proof in [4] shows that, if f is analytic in

g(Eσ), σ > ρ, Eσ⊂ D1, then the error bound

|f(z)− r(z)| = O(ρ−n)

is valid for z ∈ g(Eρ)∪g(Eρ). Indeed, the proof makes merely use of the convergence
in Eσ of the sequence of polynomials interpolating between Chebyshev points and
this convergence is exponential uniformly on every compactum contained in Eσ

(see the proof in [13, p. 174]).
Replacing the polynomial ansatz (1.2) with its rational counterpart

un(x) :=
n∑

j=0

ũj

(β)
j (x),(1.7)

i.e., polynomial collocation with its linear rational generalization, does not have
any influence on the work needed for solving (1.1). In fact, for every choice of β,
(1.3) reads

Aũ = f, A := D(2) +PD(1) +Q,(1.8)

where
ũ : = [ũ1, ũ2, . . . , ũn−1]T ,

D(1) =
(
D
(1)
ij

)
, D

(1)
ij := 


(β)
j

′
(xi),

D(2) =
(
D
(2)
ij

)
, D

(2)
ij := 


(β)
j

′′
(xi),

P : = diag
(
p(xi)

)
, Q := diag

(
q(xi)

)
,

f := [f(xi)− ur

(


(β)
0

′′
(xi) + p(xi)


(β)
0

′
(xi)

)
− u�

(


(β)
n

′′
(xi) + p(xi)


(β)
n

′
(xi)

)
]T ,

i, j = 1, . . . , n− 1.

The differentiation matrices D(1) and D(2) can be given by the formulae [5, 7]

D
(1)
ij =


βj/βi
xi − xj

, i �= j,

−
∑
k �=i

D
(1)
ik , i = j,

D
(2)
ij =


2D(1)

ij

(
D
(1)
ii − 1

xi − xj

)
, i �= j,

−
∑
k �=i

D
(2)
ik , i = j.

Although more expensive to evaluate than specific ones, the same formulae for
the diagonal elements should be used also in the polynomial case [5]. Then a
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change of points such as those considered in the present work does not require any
modification in the matrix subprograms.
In the iterative methods used for the efficient solution of (1.8) the matrix A,

and thus explicitly or implicitly D(1) and D(2), are repetitively applied to vectors
approximating ũ. But for points favorable for interpolation, the operators D(1)

and D(2) are ill-conditioned [24, 5], severely for large n. We will demonstrate in
the present work that conformal point shifts can be interesting for improving upon
the condition of the multiplication by A without loss in precision.

2 Spectral convergence with point shifts.

We now discuss the solution of the BVP (1.1) with the collocation method (1.3)
for the linear rational interpolant un(x) =

∑n
j=0 ũj


(β)
j (x), with 
(β)j as in (1.6).

The points will be shifted Chebyshev points and the weights β the Chebyshev
weights of the second kind (1.5). Let yj = cosφj , φj := j π

n , be the Chebyshev
points of the second kind. We consider a conformal map g of the ellipse Eρ contain-
ing the y-interval J := [−1, 1] of the yj’s onto the domain Fρ:= g(Eρ) containing
the interval I := [−1, 1] such that g(J) = I. This defines a new set of points
xj := g(yj). g will be chosen in such a way that our collocation points xj are
closer to equidistant than the yj . In practical computations we will use, as in [6],
a map suggested by Kosloff and Tal-Ezer [17],

g(y) =
arcsin(αy)
arcsinα

, 0 < α < 1.(2.1)

In the limit α→ 0, xi = yi; as α → 1, the xi become equidistant.
Kosloff and Tal-Ezer have used such point shifts for improving the stability of

the numerical methods which solve in time the spatially discretized time evolution
partial differential equations. Here we will use them with the iterative solution of
the collocation equations (1.3), resp. (1.8). In both cases the point shift improves
upon the condition of the differentiation process.
Before we consider this iterative procedure, we will discuss why we think the

exponential convergence of un toward u is maintained while shifting points.
The setA of all functions h that are analytic (holomorphic) in Fρ and continuous

in Fρ ∪Fρ, Fρ := g(Eρ), with the norm |h| := maxz∈Fρ |h(z)| is a (complex)
Banach space. We will use the Sobolev idea pervasive in the context of differential
equations and consider our problem in the Banach space

B(ρ):= {v : v, v′, v′′ and v′′′ ∈A, ‖v‖ := |v|+ |v′|+ |v′′| <∞}.

Moreover, we will assume that p ∈A, q ∈A and q �= 0 (q < 0 is a property that
guarantees the existence of a unique solution of (1.1); see [15]). Then we can divide
equation (1.1) by q, write it in functional form as

u+
p

q
u′ +

1
q
u′′ =

f

q
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and consider the operator L that to every v ∈B(ρ) associates the function Lv :=
p
q v

′ + 1
q v

′′ ∈B(ρ). (1.1) may be written as

(I + L)u = h, h := f/q.(2.2)

To warrant compliance with the boundary values while keeping the space linear,
it will as usual be assumed that u(−1) = u(1) = 0, which can be attained by
subtracting a known function from u and changing f accordingly. (There is no
need for this in practical computations.) We therefore consider the Banach space

B0:= {v ∈B(ρ): v(−1) = v(1) = 0}.
The linear operator I+L : B0→ (I+L) B0⊂A is obviously bounded, with ‖I+L‖ ≤
1+‖L‖ and ‖L‖ ≤

∣∣ p
q

∣∣+ ∣∣1
q

∣∣. We assume that (2.2) has a unique solution for every
h (see, e.g., [15] or [1] for conditions that guarantee this); since (I + L) B0 is a
Banach space, this implies by the bounded inverse theorem ([18, p. 286]) that I+L
possesses a bounded inverse (I + L)−1.
No simple general theory of collocation methods for boundary problems exists,

this in contrast with the situation in the numerical solution of Fredholm integral
equations, for example, where they are a special case of projection methods [3]—
see, however, [21]. We will use the theory of projection methods to motivate that,
for a whole class of problems, the linear rational method with shifted Chebyshev
points is (exponentially) convergent.
Beside the underlying Banach space B (here B0), such methods require a sub-

space Bn of finite dimension (which can be seen as an element of an infinite se-
quence B1, B2, . . . of such spaces) and a corresponding (sequence of) bounded
projection operator(s) Pn : B→Bn. In the collocation case, Bn is taken as a sub-
space spanned by some elements {φj} of B, here {
(β)j }n−1

j=1 , with

det
(
φj(xi)

)
= det

(


(β)
j (xi)

)n−1
i,j=1

�= 0(2.3)

(the dimension is n− 1 since ũ0 = ũn = 0). The method then consists in inserting
un of (1.7) into (2.2) to get (I +L)un = h, projecting this equation into Bn to get

Pn(I + L)un = (I + PnL)un = Pnh(2.4)

and using the following general theorem on projection methods.
Theorem 2.1. Let B be a Banach space, Bn a subspace of finite dimension,

Pn a bounded projection operator B→Bn. Moreover, let (I + L)−1 exist and be
bounded on the range R(I+L) and let ‖L−PnL‖ < 1

‖(I+L)−1‖ . Then (I+PnL)−1

exists on R(I + L) and

‖(I + PnL)−1‖ ≤ ‖(I + L)−1‖
1− ‖(I + L)−1‖ · ‖L− PnL‖

.

Moreover, the distance from the solution un of (2.4) to the solution u of (1.1) is
bounded by

‖un − u‖ ≤ ‖(I + PnL)−1‖ · ‖u− Pnu‖.(2.5)

Proof. [2, p. 51].
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The relevance of this theorem in the framework of the collocation method (1.3)
is given by the following result.

Theorem 2.2. Let −1 ≡ x0, x1, . . . , xn ≡ 1 be different points of [−1, 1], let
{
(β)j }n−1

j=1 be defined as in (1.6) with βj �= 0 ∀ j, let

Bn:= span{
(β)j }, Pn : v →
n−1∑
j=1

v(xj)

(β)
j (x)

be the projection of B0 onto Bn and let our collocation method be defined by (1.3)
with 


(β)
j in lieu of 
j. Then the latter is a projection method to which Theorem

2.1 may be applied.
Proof. By definition of 
(β)j and with βj �= 0, all j, one has 
(β)j (xi) = δij , the

matrix of such quantities is the identity matrix and condition (2.3) is satisfied.
The proof of the result is then identical with that in [3, pp. 51–52].
Theorems 1.1 and 2.1 help us to explain the (exponential) convergence of the

linear rational collocation method in some cases.
First, we conjecture that Pnv → v for all v ∈B(ρ). Indeed, one has pointwise

convergence in Eρ of the sequence of the polynomials interpolating v between
Chebyshev points (see [13] p. 28). We conjecture that convergence holds on the
boundary also. The reason is the fact that the Taylor series of a function f analytic
inside the open unit disk and continuous together with its derivative in the closed
disk converges also on the unit circle. (In fact, Dini continuity is sufficient for
this.) Indeed, if the Taylor coefficients of f are denoted with ak and the Fourier
coefficients of the L2 boundary function f(eiφ) are denoted with ck, one has ck =
ak, k ≥ 0 and ck = 0, k < 0 [12, p. 38]. The Fourier coefficients of d

dφf(e
iφ) are ikak

and must go to zero by the lemma of Riemann-Lebesgue. But then by Tauber’s
theorem [19, Vol. I, p. 402] the Taylor series of f must converge on the boundary.
On the other hand, interpolating polynomials are just a slight generalization of
Taylor polynomials [19, Vol. II, p. 70]. And by the remark following Theorem 1.1
this convergence on the boundary will correspondingly hold on Fρ for our rational
interpolant (1.7).
Second, if our conjecture is true and since we assume the existence of three

continuous derivatives for every v ∈B(ρ), we have ‖v − Pnv‖ → 0, from which
it follows that the sequence {I − Pn} is strongly operator convergent [18, p. 264]
toward the zero-operator and therefore that {‖I − Pn‖} is bounded [ibid. p. 267].
Thus, if ‖L‖ is small enough, all the hypotheses of Theorem 2.1 are satisfied,
(I+PnL)−1 exists and the solution of (1.3) with the basis functions 


(β)
j replacing


j satisfies (2.5).
Third, if the solution u not only belongs to B(ρ), but is also analytic on Fρ,

then |u− Pnu| → 0 exponentially, uniformly on every compactum in Fρ ∪Fρ, and
by Weierstrass’ theorem [19, Vol. I, p. 333] the same holds true for the first two
derivatives. Then ‖u− Pnu‖ → 0 exponentially too and by (2.5) the same is true
for ‖un − u‖ and |un − u|.
The same line of reasoning could work also if in the equation the main part is u′′,

and Lu := pu′ + qu is significantly smaller. (If one would then set u′′ instead of u
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as the unknown rational interpolant, then a rational spectral integration method
in the spirit of Greengard [14] would result—see also [26].)

3 Iterative solution of the discretized equations.

In global (pseudo)spectral methods like those considered here, the matrix A of
system (1.8) is full. Whereas for small n classical Gaussian elimination is usu-
ally appropriate for its solution, as n becomes larger one must resort to iterative
methods for a reasonable computational effort. A vast palet of such methods is
available. A simple classical example is Richardson iteration

uk+1 = uk − γ(Auk − f)(3.1)

and its variations. Here we will use the preconditioned minimal residual Richard-
son method (MRR), whose efficiency in the context of spectral methods has been
demonstrated in [10]. However, we modify it by minimizing the preconditioned
residual instead of the residual itself. Possibly first used with spectral methods in
[8], it has proved more efficient than classical MRR. If one denotes the precondi-
tioner with Aap, the set of formulae for computing the new approximation uk+1

can be written as follows:

rk =

{
A−1

ap (Au0 − f), k = 0,

rk−1 − γk−1zk−1, k ≥ 1,
zk = A−1

ap Ark,

γk =

(
rk, zk

)(
zk, zk

) ,
uk+1 = uk − γkrk.

Most other methods, at least among those requiring only the application of A—
and not of AT—could be used as well. However, our purpose here is not the study
of the influence of point shifts upon a particular method, but the improvement we
think such shifts bring to most if not all methods.
Which preconditioner to use? In the context of spectral methods, S. Orszag’s

idea of using as Aap a classical finite difference (FD) approximations to the differ-
entiation operator [20] has become standard. Here we will take the one in which
the derivatives are replaced with those of interpolating polynomials of degree 2
[22, p. 113] for unequally spaced points. Such preconditioners have been theoret-
ically studied by Kim and Parter [16]. Finite element (FE) preconditioners have
later been suggested [11]; we have however not tried them since the same order
of approximation is attained by FD-preconditioners, and again because the effects
we want to demonstrate should take place with every choice of Aap.

4 Influence of point shifts upon the discretized operators.

Iterative methods of the form zk+1 = Fzk are theoretically governed by the
spectrum S(F) of the matrix F: to guarantee convergence of the iteration for
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every starting vector z0, all eigenvalues of F should lie within the unit disk about
the origin. In practice, however, the ill-conditioning of the multiplication by F
must be taken into account and, for that purpose, the ε-pseudospectrum [25]

PS(F) :=
⋃

‖E‖ < ε

S(F+E)

of F is more relevant. If F is nearly normal, PS(F) is not significantly larger
than S(F) and consideration of the latter is adequate. For highly nonnormal ma-
trices such as A, on the other hand, PS(A) expands very rapidly about S(A)
as ε increases. (Somewhat surprisingly, for Gaussian elimination the severe ill-
conditioning of A does not have any significant impact on the quality of the solu-
tion [8, 23]; solving a system of equations is mathematically equivalent to applying
the inverse matrix, here a well-conditioned integration operator.)
The reason for the improvement on the condition of A induced by point shifts

is the fact that they reduce the magnitude of the expansion (examples of such
dramatic reductions of the size of pseudospectra seem to have first been published
in [6]). But here the preconditioner radically changes the picture. In Figure 4.1
(left) we give the 10−3-pseudospectrum of F(k) := I − γkA−1

ap A for polynomial
collocation in Example 2 of Section 5, with η = 1,000, n = 160 (see Table 5.2),
k = 20 (with u0 given by the line between the boundary points). In sharp contrast
with the pseudospectrum ofA, PS(F(k)) does almost not depart from S(F(k)): the
preconditioner practically annihilates the ill-conditioning! Considering spectra is
therefore sufficient here, and Figure 4.1 (right) documents the decrease of S(F(k))
as α increases from 0 (circles) to 0.99 (crosses).
To confirm the extreme efficiency of the preconditioner, we have computed for

several examples of Table 5.2 the maximal element (in absolute value) of the
difference between the differentiation matrices with and without point shifts, for
A and for the preconditioned A−1

ap A. The results are given in Table 4.1.
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Figure 4.1: Displacement of the spectrum induced by a point shift.
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Table 4.1: Influence of the point shifts on the differential operators.

η

1
1
10
100
1,000
10,000
10,000
100,000

n

10
20
40
80
160
320
640
1280

Change in A

3.72e2
6.52e3
1.08e5
1.75e6
2.87e7
4.84e8
7.25e9
1.20e11

Change in A−1
ap A

4.07e− 1
3.12e− 1
1.29e− 1
1.61e− 1
6.12e− 1
1.78e0
8.81e− 1
1.67e0

5 Numerical examples.

For the sake of comparison, we have tested the rational collocation method on
the same four examples as in [8] and [9]. Here we merely comment on two problems.
Graphs of the solutions can be found in the works just mentioned.
In all examples our interpolation/collocation points have been Chebyshev points

of the second kind, shifted by means of the application (2.1) for different α’s. The
norm of the error has been approximated by considering its values at the 1000
equally spaced points x̂� = − 5

4 +
�−1
999

10
4 , 
 = 1(1)1000, on the interval [−5/4, 5/4]

and computing the maximal absolute value at those x̂� lying in [−1, 1]. These
points depend neither on n nor on α. The iteration process has been performed
until the error norm came to lie below the tolerance n · 10−16 or until the number
of iterations surpassed 2000. (in fact, n/3 should be the barrier, In the tables, an
error given as 0.0 means that it was < n ·10−16. The computations were performed
in FORTRAN77 on a DECalpha3000 workstation.

Example 5.1. Our first problem reads

u′′(x) + au′(x) + bu(x) = −ab cos(bx)e−ax,

u(0) = 0, u(1) = sin be−a

and its solution is given by u(x) = sin(bx)e−ax, where a and b are two positive
parameters. b controls the frequency of the oscillations: the higher b, the larger
the number of oscillations, and the steeper the function in each of the latters. The
change of variable x = (t+ 1)/2 should be made for the problem to take place in
the interval [−1, 1] instead of [0, 1].
In Table 5.1 we give the numbers obtained with a = 5, b = 100 and 200 and

increasing α’s (recall that α = 0 corresponds to the classical polynomial Chebyshev
method). In the starred example, the error 5.46 · 10−4 was attained after 25
iterations, the difference between consecutive iterates is about 1.97 · 10−8.
The number of iterations is relatively small with pseudospectral methods, as

compared with finite difference or finite element methods; this may be attributed
to the analyticity of the arising functions which makes for a good approximation to
the solution from the given information. Note also that in principle the quality of
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the latter decreases as α increases. Indeed, to every function on the interval there
corresponds via the transformation φ = arccosx a function on the circle [8]. And
the quality of the information on the circle is decisive for that of the approximation.
With α = 0 the information taken from the problem is at equidistant points on
the circle, which is best in the absence of other knowledge. Having α grow means
departing from this optimum.

Table 5.1: Reduction of the number of iterations for increasing α in Example 1.

α

0.0
0.9
0.99
0.999
0.9999

b = 100, n = 450

Error

3.77e− 13
7.46e− 14
1.49e− 13
1.42e− 12
9.41e− 7

# iterations

96
26
21
22
23

b = 200, n = 950

Error

5.46e− 4
3.97e− 13
2.31e− 13
1.60e− 13
9.06e− 10

# iterations

> 2000∗

30
21
19
24

Table 5.2: Effect of a point shift on the approximation error and on the number of
iterations in Example 2.

η

1
1
10
100

1,000
10,000
10,000
100,000

n

10
20
40
80
160
320
640
1280

α = 0.0

Error

1.22e− 6
0.0
0.0
0.0

3.69e− 8
1.66e− 4
1.03e− 11
4.96e− 6

# iter.

24
16
11
20
134
581
308
1596

α = 0.99

Error

2.82e− 3
2.02e− 4
4.96e− 6
1.35e− 8
1.65e− 13
3.34e− 7
1.65e− 12
3.53e− 10

# iter.

24
28
26
31
89
434
223
1080

Example 5.2. In contrast with the usual case just described, it sometimes
happens that the point shift not only speeds up the convergence of the iteration
but, more importantly, improves upon the precision of the approximate solution
for a given n. This is especially the case when the most difficult part of the solution
to be approximated lies far from the extremities of the interval, since the point
shift brings the collocation points closer to the center. A good example, to which
though the theory of Section 2 does not apply, is the following problem involving
a parameter which makes for a large slope in the center:

u′′(x) + ηxu′(x) = −π2 cos(πx) − ηπx sin(πx), u(−1) = −2, u(1) = 0.

The solution

u(x) = cosπx+
erf(δx)
erf(δ)

, δ =
√
0.5η,

becomes steeper and steeper at zero as η grows larger.
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Table 5.2 displays the said improvement in both the precision and the number
of iterations as n is large enough for the main difficulty of the solution to lie inside
the interval (η ≥ 1000); the gain is about 1/3. For the easier problems, no gain is
recorded, for the same reason of quality of information explained above. In Table
5.3 we give the change in precision and the number of iterations for fixed n and
increasing α with two pairs of η and n. They show again that an improvement of
one third may be obtained without significant loss in precision.

Table 5.3: Reduction of the number of iterations for increasing α in Example 2.

α

0.0
0.9
0.99
0.999
0.9999

η = 103, n = 400

Error

6.72e− 14
6.72e− 14
1.04e− 13
2.27e− 12
4.46e− 7

# iterations

15
12
10
34
66

η = 104, n = 1000

Error

0.0
0.0
0.0
0.0

5.09e− 11

# iterations

155
124
109
91
217

Our examples demonstrate that, if difficulties arise with the convergence of the
iteration, one may just try adding three lines of code for a better positioning of
the interpolation points!
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