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Improving the accuracy of the matrix differentiation method
for arbitrary collocation points
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Abstract

We discuss the errors incurred when using the standard formula for calculating differentiation matrices in spectral
methods and suggest more precise ways of calculating the derivatives and their matrices. 2000 IMACS. Published
by Elsevier Science B.V. All rights reserved.
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0. Introduction

In the matrix version of the collocation methods one expands the approximate solutionun as an
interpolating polynomial in its Lagrangian form

un(x) :=
n∑
k=0

un(xk)Lk(x), (1)

where theLk(x) are the Lagrange polynomials corresponding to distinct interpolation pointsxk , k =
0(1)n, [6]. The derivatives of the approximate solutionun are then estimated at the collocation points by
differentiating (1) and evaluating the resulting expression, see [4]. This yields

u(p)n (xj )=
n∑
k=0

un(xk)L
(p)
k (xj ), p = 1,2, . . . , (2)

or in matrix notation

u(p) =D(p)u, (3)

where

u := [un(x0), . . . , un(xn)
]T
, u(p) := [u(p)n (x0), . . . , u

(p)
n (xn)

]T
, (4)
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and whereD(p) is the(n+ 1)× (n+ 1) matrix whose entries are given by

D
(p)
jk :=L(p)k (xj ), j, k = 0(1)n. (5)

Such derivatives are calculated a great many times when solving time independent problems with iterative
methods or time evolution problems with the method of lines, see [4].

The authors of [1–3,5,7] have presented different ideas for alleviating the effects of roundoff-errors
in the calculation of derivatives and differentiation matrices forC̆eby̆sev–Gauss–Lobatto points (i.e.,
xk = cos(kπ/n), k = 0(1)n).

In the present work we will briefly review the results of [1] in a more general setting (in Section 1)
and apply this technique to Gauss–Lobatto points (in Section 2) and toC̆eby̆sev–Gauss–Radau points
(in Section 3), for which explicit formulas for the differentiation matrices are known but where no
fast transform method (independent of the machine precision) is known for calculating approximate
derivatives.

1. Sources and alleviation of errors

In [1,2] the relation

D
(p)
jj =−

n∑
k=0, k 6=j

D
(p)
jk , p= 1,2, . . . , (6)

is used to calculate the diagonal elements of the differentiation matrices. Relation (6) arises from the fact
that, if the interpolated functionu takes the value one everywhere (u(x) ≡ 1), then the polynomial (1)
interpolatesu exactly, so that

∑n
k=0Lk(x)≡ 1. For the derivatives of this sum this implies, in particular,

n∑
k=0

L
(p)
k (xj )= 0 (p = 1,2, . . .),

or (6) forD(p). Every diagonal element of the differentiation matrix thus should equal the negative sum
of all other elements on its row.

Experiments show that the maximum error incurred in calculating thepth (p = 1,2) derivative ofu
grows at the same rate as the maximum value (M) of the sum of the elements of the row (see Tables 1
and 3 or the numerical experiments in [1]). The results in [1,2] and in the next two sections of the present
paper demonstrate that preserving the relation (6) is more important than calculating some elements of
the differentiation matrices exactly.

To alleviate the error, we propose (as in [1]) to use the barycentric representation ofun [6]:

un(x)=
∑n
k=0(λk/(x − xk))un(xk)∑n

k=0λk/(x − xk)
, (7)

where

λ−1
k :=

n∏
j=0, j 6=k

(xk − xj ).

In [8], Schneider and Werner have given aformulafor differentiating rational functions written in their
barycentric form. They have also suggested analgorithm for calculating all derivatives of such functions;
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this algorithm involves divided differences, which account for the better stability in theC̆eby̆sev–Gauss–
Lobatto case [1]. As in the latter article, we use this algorithm to calculate the derivative of the polyno-
mial un. It should however be noted that this algorithm does not produce the differentiation matrices.

For the first and second order differentiation matrices, Schneider and Werner’s formula reads

D
(1)
jk =


λk

λj

1

xj − xk , if j 6= k,

−
n∑

i=0,i 6=j

λi

λj

1

xj − xi , if j = k,
(8)

and

D
(2)
jk =


2D(1)

jk

(
D
(1)
jj −

1

xj − xk
)
, if j 6= k,

2
(
D
(1)
jj

)2+ 2
n∑

i=0,i 6=j
D
(1)
j i

1

xj − xi , if j = k.
(9)

Moreover, to diminish the errors due to smearing [6] in the calculation of every diagonal element of
the first order differentiation matrix, we rearrange the summation in (6) from the smallest to the largest
term in absolute value (as already done in [1]).

And also for the second order differentiation matrix, instead of the second line of (9), we use the
relation (6) and the rearrangement proposed above.

Note that the formulas (8) and (9) can be used for any set of points: If we want to approximate the
derivative of a function by its interpolating polynomial, we can use these formulas and the relation (6).

In the next two sections we give errors in calculating the derivatives for Gauss–Lobatto points and for
C̆eby̆sev–Gauss–Radau points of two different example functions,u(x) := sin(x) andv(x) := 1/(1+ x2)

on [−1,1]. We measure the error in the numerical approximationun with the maximum- orL∞-error

E∞ := max
06k6n

∣∣un(xk)− u(xk)∣∣.
The computations were performed on an AlphaServer 2100A 5/300 using MATLAB. The results are

presented in Tables 1–4. There (1) denotes the results with the standard formula, (2) with the algorithm
of Schneider and Werner, (3) with the explicit formulas (8) and (9) with rearrangement (and relation (6)
for (9)) and (M) the maximum row sum of the elements of the matrix used in methods (1) and (3).

2. Computational examples for Gauss–Lobatto points

The first order differentiation matrix for (Legendre–)Gauss–Lobatto points can be given explicitly (see
[4,10])

D
(1)
jk =



(n+ 1)n

4
, if j = k = 0,

−(n+ 1)n

4
, if j = k = n,

0, if j = k 6= 0, n,
Ln(xj )

Ln(xk)

1

xj − xk , if j 6= k,

(10)
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Table 1
Errors in approximating the first (top) and second (bottom) derivatives ofu(x) using the three different techniques

n 16 32 64 128 256 512

(1) 3.21· 10−12 8.05· 10−11 6.68· 10−10 1.10· 10−8 1.09· 10−7 2.35· 10−5

(M) 3.78· 10−12 9.58· 10−11 7.95· 10−10 1.31· 10−8 1.29· 10−7 2.79· 10−5

(2) 3.77· 10−15 1.88· 10−14 3.45· 10−14 5.03· 10−13 1.71· 10−12 5.14· 10−12

(3) 7.99· 10−15 1.38· 10−14 4.10· 10−14 1.18· 10−12 1.63· 10−12 2.04· 10−12

(M) 2.00· 10−15 5.69· 10−15 1.05· 10−13 4.47· 10−13 9.77· 10−13 4.28· 10−12

(1) 1.34· 10−10 1.41· 10−8 3.97· 10−7 2.50· 10−5 1.22· 10−3 9.33· 10−1

(M) 1.51· 10−10 1.67· 10−8 4.73· 10−7 2.97· 10−5 1.45· 10−3 1.11· 100

(2) 4.87· 10−13 7.24· 10−12 5.49· 10−11 2.46· 10−9 3.70· 10−8 1.69· 10−7

(3) 1.22· 10−12 6.91· 10−12 6.59· 10−11 1.93· 10−9 5.78· 10−8 4.78· 10−7

(M) 2.13· 10−13 2.01· 10−12 4.33· 10−11 4.66· 10−10 9.30· 10−9 2.33· 10−7

Table 2
Errors in approximating the first (top) and second (bottom) derivatives ofv(x) using the three different techniques

n 16 32 64 128 256 512

(1) 3.47· 10−5 8.15· 10−11 3.98· 10−10 6.54· 10−9 6.46· 10−8 1.40· 10−5

(2) 3.47· 10−5 7.14· 10−11 3.49· 10−14 1.62· 10−13 4.51· 10−13 5.47· 10−12

(3) 3.47· 10−5 7.14· 10−11 2.13· 10−14 4.55· 10−13 1.82· 10−12 7.27· 10−12

(1) 4.71· 10−3 3.85· 10−8 2.37· 10−7 1.48· 10−5 7.24· 10−4 5.54· 10−1

(2) 4.71· 10−3 3.77· 10−8 6.53· 10−11 1.49· 10−9 4.46· 10−9 6.47· 10−7

(3) 4.71· 10−3 3.77· 10−8 1.16· 10−10 1.86· 10−9 3.78· 10−9 6.95· 10−7

whereLn(x) is the Legendre polynomial of degreen, x0 =−1, xn = 1 andxj , j = 1(1)n − 1, are the
zeros ofL′n(x).

The second derivative matrix can also be given explicitly (see [10]), but for the direct method we use
here the relationD(2) = (D(1))2.

In Table 1 the results for the first two derivatives of the functionu(x)= sin(x) are listed.
We see in Table 1 that the error committed in calculating the derivative is close to the maximum value

of the sum of the elements of the row (M). Forn= 512 we gain seven powers of ten in the approximation
of the first derivative ofu and six powers for the approximation of the second derivative with methods (2)
and (3).

For v andn = 16 and 32, we see in Table 2 that the results are almost the same with all techniques:
The discretization error dominates the calculation error. For largern, the algorithm and the formulas of
Schneider and Werner give the best results. As in Table 1, we gain almost seven powers of ten for the
first derivative and almost seven powers for the second derivative andn= 512.
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In this case, we can even calculate the approximate derivatives of a function inn2 operations (instead
of 2n2) by using Solomonoff’s algorithm [9]. This algorithm uses the anticentrosymmetry property
D
(1)
jk = −D(1)

n−j,n−k of the differentiation matrix. It has been used by Don and Solomonoff in [5] for
calculating the differentiation matrix for̆Ceby̆sev–Gauss–Lobatto points.

3. Computational examples forC̆eby̆sev–Gauss–Radau points

The first order differentiation matrix for̆Ceby̆sev–Gauss–Radau points can be given explicitly,
see [10]:

D
(1)
jk =



(n+ 1)n

3
, if j = k = 0,

− 1

2(1− x2
j )
, if j = k 6= 0,

cj

ck

1

xj − xk , if j 6= k.

(11)

Here, the collocation points are given by

xj := cos
(

2jπ

2n+ 1

)
, j = 0(1)n,

and

c0= 2, cj =
√

2

1+ xj , j = 1(1)n.

Table 3
Errors in approximating the first (top) and second (bottom) derivatives ofu(x) using the three different techniques

n 16 32 64 128 256 512

(1) 7.27· 10−14 6.35· 10−12 5.82· 10−11 1.20· 10−10 2.42· 10−8 1.70· 10−7

(M) 9.95· 10−14 7.45· 10−12 6.91· 10−11 1.44· 10−10 2.88· 10−8 2.02· 10−7

(2) 2.08· 10−14 6.00· 10−14 7.42· 10−14 2.94· 10−13 1.14· 10−12 7.03· 10−12

(3) 9.10· 10−15 1.29· 10−14 2.37· 10−13 4.06· 10−13 3.04· 10−12 1.34· 10−11

(M) 3.94· 10−15 9.68· 10−15 8.26· 10−14 1.14· 10−13 2.32· 10−12 5.04· 10−12

(1) 5.68· 10−12 1.90· 10−9 6.72· 10−8 7.38· 10−7 4.27· 10−4 1.47· 10−2

(M) 7.44· 10−12 2.26· 10−9 7.97· 10−8 8.79· 10−7 5.05· 10−4 1.74· 10−2

(2) 2.12· 10−12 1.75· 10−11 1.93· 10−10 3.71· 10−9 2.79· 10−8 7.37· 10−7

(3) 1.88· 10−12 9.40· 10−12 5.20· 10−10 3.70· 10−9 6.02· 10−8 8.41· 10−7

(M) 4.33· 10−13 3.51· 10−12 6.23· 10−11 1.22· 10−9 1.49· 10−8 5.71· 10−7
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Table 4
Errors in approximating the first (top) and second (bottom) derivatives ofv(x) using the three different techniques

n 16 32 64 128 256 512

(1) 5.38· 10−5 1.53· 10−10 3.47· 10−11 7.12· 10−11 1.44· 10−8 1.01· 10−7

(2) 5.38· 10−5 1.57· 10−10 1.12· 10−13 3.02· 10−13 1.07· 10−12 6.71· 10−12

(3) 5.38· 10−5 1.57· 10−10 1.93· 10−13 6.46· 10−13 1.76· 10−12 7.74· 10−12

(1) 6.03· 10−3 6.63· 10−8 3.98· 10−8 4.41· 10−7 2.52· 10−4 8.71· 10−3

(2) 6.03· 10−3 6.75· 10−8 1.16· 10−10 1.23· 10−9 7.97· 10−9 4.46· 10−7

(3) 6.03· 10−3 6.74· 10−8 8.37· 10−11 9.24· 10−10 1.75· 10−8 6.00· 10−7

We have again computed approximate derivatives of the functionsu(x) andv(x). The results are listed
in Tables 3 and 4.

As in Table 1, we see in Table 3 that the error grows at the same rate as the maximum value of the
sum of the elements of the row. For the approximation of the first and second derivatives, we gain five
powers of ten withn= 512. For the same reason as in Table 2, the first two columns of Table 4 are almost
the same and, again, the algorithm and the formulas of Schneider and Werner yield the best results for
largern.

Unfortunately, here the differentiation matrix is not anticentrosymmetric and Solomonoff’s algorithm
cannot be used.

4. Conclusion

We have displayed the errors incurred when calculating the pseudospectral differentiation matrices
for different kinds of points and we have suggested ways of alleviating these errors. This leads to the
following recommendations: To compute the derivative of a function one should use the algorithm of
Schneider and Werner. On the other hand, the formulas (8), (9) and the relation (6) is to be preferred when
computing the elements of the differentiation matrices which are necessary for solving time evolution
problems with the method of lines or time independent problems with iterative methods.
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