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Abstract—We discuss here the errors incurred using the standard formula for calculating the
pseudospectral differentiation matrices for CebySev-Gauss-Lobatto points. We propose explanations
for these errors and suggest more precise methods for calculating the derivatives and their matrices.
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1. INTRODUCTION

Recent years have seen widespread use of spectral and pseudospectral methods for the solution of
partial differential equations [1-3]. The main reason is that, due to their infinite order, very good
approximations of the solution are in general obtained with relatively few values of the solution
when the latter is sufficiently differentiable.

In the matrix version of pseudospectral methods, one typically expands the approximate solu-
tion u, as an interpolating polynomial in its Lagrangian form

n
Un(2) =Y up (k) Li(z), (1)
k=0
so that the unknown coefficients are directly the values of the corresponding function at the
interpolation points. The Lg(z) in (1) are the Lagrange polynomials. The CebySev pseudo-
spectral method on [-1,1] with boundary values uses the Cebysev-Gauss-Lobatto points

k
Tg = COS %, k =0(1)n, (2)

as interpolation points. For nonperiodic problems, it yields much better results than the Fourier
pseudospectral method, at least as long as merely low-order derivatives of u,, are involved. These
derivatives can be estimated at the collocation points by differentiating (1) and evaluating the
resulting expression. This yields

n
ulP (z;) =D un (@) LP (z),  p=12,..., (3)
k=0
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or in matrix notation
u® = D(p)u, (4)

where

U= [un (T0) ...t (zn)] T,  u® = [ugw (zo), ..., u (xn)] T (5)

and D®) is the (n + 1) x (n + 1) matrix whose entries are given by
D® .= [P (z}) i,k = 0(1)n (6)
jk k 27 2 .

Such derivatives are calculated a great many times when solving time independent problems
with iterative methods or time evolution problems with the method of lines. The differentiation
matrices have been the subject of a significant number of articles, among them [4-7]. For example,
calculating the differentiation matrices can be useful for studying the stability of pseudospectral
methods applied to partial differential equations [6,8].

As noted in [9], errors much larger than machine precision arise when calculating the ma-
trix D(® for CebySev points. For example, the errors in the first derivative computed as in (4)
grow like n. We present here an explanation for these errors. For the éebyéev—Gauss—Lobatto
points (2), we then suggest ways of computing the differentiation matrices with smaller error
growth.

2. COMPUTATION OF DERIVATIVES WITH
THE MATRIX METHOD

For the Cebysev collocation points (2), the first and second collocation derivative matrices D(1)
and D® can be computed analytically [1,2]. The entries of D() are given by

¢ m? 41
“6+ . ifj=k=o0
2
-2”6+1, if j = k=mn,
1)
D.gk_ xj if 4 k;éO (7)

TR 5y, U= Iz

2(1-22)

G 1 eiaw,

\ Ck T; — Tk

with co = 2, ¢, = 2(—-1)", ¢ = (=1)*, k = 1(1)n — 1. The second derivative matrix can be given
explicitly also (see [10,11]), and here the relation D®) = (D®)? holds, which is not true for all
collocation methods {11].

The matrix (7) is not skew symmetric, as opposed to the Fourier differentiation matrix. If
the collocation derivative is computed by matrix-vector multiplication, then the total number of
operations is 2n2. For small problems, matrix techniques are often faster than transform methods
(which, for éebyéev—Gauss—Lobatto points, can be applied by means of the FFT) and, unlike the
latter, matrix multiplication is easily amenable to vectorization. Moreover, as noted by Fornberg
[3, p. 8], “the pseudospectral method becomes particularly easy to apply to differential equations
with variable coefficients and nonlinearity, since these give rise only to products of numbers
(rather than to problems of determining the expansions coefficients for product of expansions)”.

We now estimate the errors incurred when calculating the derivatives of the Cebysev polynomial
approximation by comparing numerically calculated derivatives with the exact derivatives of an
example function. We measure the error in the numerical approximation u, with the maximum-
or Lg,-error

Eoo = 021}?%(" |‘U,n($k) - u(l'k)l H
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here for the example function
u(z) := sin(x), -1<z<1. (8)

The justification for this (simple) choice is that, as noted in [9], the results are essentially inde-
pendent of the complexity of the function (see Section 5 for other examples). And, since it is
very simple, u and its derivatives are approximated very accurately with small n and the growth
of the numerical error becomes visible. The calculation of the E-errors for the derivatives was
performed at the same éeby§ev—Gauss—Lobatto points . The computations were done on an
AlphaServer 2100A 5/300.

Table 1. Errors in approximating the derivatives of sin(z) and maximum value of
the sum of the elements of the rows using (7) (top) and (12) (bottom), both times
with the relation D(?) = (D(1))2,

n 16 32 64 128 256 512 1024
EQ 8.69 1071 4.93.10"12 2.00-10-'! 5.40.10-1° 1.17.10~% 1.50.10~7 1.70-10~°
ma.x( iDﬁ)) 9.17-1071* 5.85.10712 236-107!! 6.42.1071° 1.39.10-8 1.78.10~7 2.02.10-6
7 k=

EY 1.00-10711 2.10-107° 4.25-10"%8 3.96-10¢ 3.41.10"% 1.50.10~2 7.05.10-1

1.12-107' 249.107? 5.05-108 4.71-10~6 4.06.10~4 1.78-10-2 8.37.10-!

=}

&
A~
R
S

ELY 2.12-10713 4.13-.10"1% 277.10712 344-1071! 1.19.10-% 1.43.-10-° 6.61.10-8

ma.x( ibﬁ)) 2.56-10713 568-10713 364-10712 4.00-10-1' 1.41.10-° 1.70-10~9 7.86.10~®

EP 2581071 291.1071® 391-10° 233-107 3.09-10"5 2.43.10-4% 2.97.10-2

n
max p® 3.09-1071 349.10"10 466-10"° 2.76-10-7 3.67-105 2.89.10-% 3.52.10-2
ik h

The first and third row of Table 2 show the growth of the maximum error E,, for both the
first and the second derivatives as a function of the number n + 1 of collocation points. Although
not necessary, we chose n = 2¢ in order to allow the comparison with the transform method.
We went up to n = 1024, about the largest size giving rise to systems of equations for the
approximate differential equation that can be directly solved on workstations. As pointed out by
Breuer and Everson [9], the Eo-error in the first derivative grows like n4. The second derivative
was computed using the relation D(? = (D(l))z; its Eo-error is observed to increase as nS.

3. SOURCES OF ERRORS

In [9], Breuer and Everson explain that the error spoiling the first derivative is due to roundoft,
(on our computer, the machine precision v is about 10~19) affecting the approximation of z; =
cos 1/n, so that, for large n,

=1 +v+0(nt 2.

2n?
. . . =(1 L
Using this expression, we may expand D(()l) as a series in v,

-2 2
To—Z1 1/2n2 — v

DY = = —4n® + O (n'), 9

which shows that the error in D‘(ﬁ) grows like n*v, dominating any n?-inner-product accumulation
error in DM,
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Another way of understanding the error is to look at a certain relation among the entries of the
differentiation matrices. If the interpolated function u takes the value one everywhere (u(z) = 1),
then the polynomial (1) interpolates u exactly, so that 3 p_; Lk(z) = 1. Then we get for the
derivatives of this sum, 7 _, L¥ (z) =0 (p = 1,2,...) and in particular YR o LP(z;) =0(p=
1,2,...), so that

n
LP(z)=- Y LP (). (10)
k=0, kxj
That is, every diagonal element of the differentiation matrix should equal the negative sum of
all other elements on its row. This reflects the fact that all the derivatives of constant functions
vanish.

On the other hand, we see in the formulas (7) that the elements D[()lo) and D)) are calculated
precisely even when the other elements on their row are subject to large errors, so that the
relations D{y) = — Y-7_, D)) and D) = — 3722 D{Y) are less and less satisfied as n increases.
The error is O(n*v) for DY) and O(nv) for D). We can experience that the maximum error
incurred in calculating the pt® (p = 1,2) derivative of u grows at the same rate as the maximum
value of the sum of the elements of the row (top half of Table 1).

If we replace u by a modified example function that takes the value 0 at the extremities, say

u(z) := sin (—725(.7: + 1)) , (11)

then we see that the results improve sharply (see Table 2). This demonstrates that the main
cause of error is the very accurate calculation of the first and the last elements of the matrix D(®)
for which the error is only of order #. We can therefore hope for better results by modifying the
way the diagonal elements of the differentiation matrix are calculated.

Table 2. E&l,) and Eg)-error for the function (11) using (7) and the relation D(2) =
(D)2,

n 16 32 64 128 256 512 1024
ES) [ 7.33-10-1% 275.10-14 4.32.10-13 1.28.10-!2 237.10-12 1.24.10-11 4.928.10-1!

ED | 852.10-13 119.10-1' 592.10-10 500.10-° 5.11-10-8 5.29-10~7 1.16 - 105

4. ALLEVIATION OF THE ERRORS

We now present three different ways of alleviating the errors.

(i) As noted by Tang and Trummer [7], the evaluation of the elements of D(!) by formula (7)
is prone to cancellation. The first way of diminishing the errors is therefore to use trigono-
metric identities and replace (7) by

%

2sin?(jn /n)’
i (12)

=) (-1y i #k

2¢; sin((j + k)m/2n)sin((j — k)7 /2n)’ IR

with ¢ as before (without modifying the formulas in (7) for j = k =0 and j = k = n).
We could also use trigonometric identities for the matrix D(® given explicitly (see {10,11]),
but here we use the relation D = (D)2, as before.

One can see the improvement of the results in the bottom half of Table 1. The error
is again close to that affecting the sum of the row. We gain one power of 10 for the
approximation of the first derivative and two for the second.

We have also experimented with the algorithm proposed by Welfert [12], but this did
not improve the results obtained with (12).

ifk=35+#0,n,
1
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(ii) The second and best way we tried makes use of the barycentric representation of the
polynomial of degree < n interpolating between the CebySev-Gauss-Lobatto points {13,14]:

un(z) =

1
Ezzo((_l)k‘sk)/(l' — T )un(Tk) Rt k =0 or n,
i % 1 (5k = 2 (13)
2k=o((=1)%6)/(z — zk) 1, otherwise.

In [15], Schneider and Werner present a formula for differentiating rational functions
written in their barycentric form. They also suggest an algorithm for calculating all
derivatives of such functions. Their algorithm for calculating the derivative of a function
with values f := [fo,..., fn]T involves first-order divided differences of the interpolated
values

fe—1;

k70 k=01)j-1,j+1(1)n.
T — 5

Let us expand the calculated quotient of the term involving zo — x; into its Taylor series

fO - f], " flll

— f 4 J0 -7 0 - ST T
Pe— = fo+ 2 (.’IZ() 331)+ 30 (.’Eo .’E]) +

" 1 fm 1 2
~ fl 40 - 0 (_—_ _
~lot g (2n2 ”) T (2n2 ") *

=fi+0(n%v).

It follows that, as soon as 7 is sufficiently large, the error is of order v, the term involving
Zo — x1 is less sensitive than (9) to rounding errors and we can therefore hope for better
results, which is confirmed in the top half of Table 3. The error in the derivative of our test
function u(z) = sin(z) does not grow as fast as before. The results are also better than
those obtained with trigonometric identities, compare with the bottom half of Table 1.
This way of calculating the differentiation matrix is even better than the transform method
via the FFT, whose error are given in the bottom half of Table 3. Breuer and Everson have
found that in the case of the transform method the error is proportional to O(n?v) for the
first derivative and O(nv) for the second. It should be noted, however, that neither the
transform method nor the above algorithm produce the differentiation matrices.

Table 3. E‘(,é) and Eg)-error using the algorithm of Schneider and Werner (top) and
the transform method (bottom).

n 16 32 64 128 256 512 1024
EX [6.00-10-15 2.18-10~14 3.95.10-1¢ 571-10-14 3.15.10~!3 2.58.10-12 1.67.10-11

(2 15.29-10-13 7.60-10-12 3.55-10-1! 3.55.10-10 1.03.10-% 1.82.10-7 5.18.10-°

EL [1.22.10-14 9.08-10714 2.14-10-!3 1.18-10-!2 1.22.10-!! 6.13.10-1! 1.42.10-°

ESP 1.05-10-12 2.54.10-11 6.49-10-11 628 .10-° 4.56-10-8 1.05-10-5 1.80.10-*

(iii) Another way of shedding light on this issue is to calculate the differentiation matrices D)
and D® from (13) with the formula proposed by Schneider and Werner [15). This yields
the first derivative matrix as

bk 1

5]' Tj — Tk ’

N

i=0,i 05 Tj — Ti

if j # k,
(14)

, fj=k,
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and the second derivative matrix as

pw (D(.l) _ __1___) v if5 £k,
J i3 x—x
D® — ’ (15)

7 1) ? L | v

2(1);..) +2 3 DY ——, ifj=k
i=0,i#j Tj— T

In Table 4, we display the errors in the first and second derivatives and we can see that
they are again close to the errors incurred in summing the rows.

This method is again better than the transform method via the FFT (compare the top
half of Table 4 with the bottom half of Table 3) .

The errors appearing in Table 4 could seem surprising, especially for the first derivative,
where we explicitly have the relation (10). They are due to smearing [14]. If we rearrange
the summation of the elements in every row from the smallest to the largest (in absolute
value), the error diminishes, see the bottom half of Table 4.

We have also experimentally used the relation (10) and the proposed rearrangement for
calculating the second differentiation matrix; we observe a larger improvement than for
the first derivative, compare top and bottom half of Table 4 for the second derivative
matrix. After rearrangement, the results are similar to those obtained using the algorithm
of Schneider and Werner.

We have also experimented to combine the relation (12) with (14) and (15), but did not
see any improvement.

Table 4. Errors in approximating derivatives of sin(z) and maximum value of the
sum of the elements of the rows using (14) and (15), without (top) and with (bottom)
rearrangement and the relation (10).

n 16 32 64 128 256 512 1024
EY 1.29- 1014 7.41-10-14 2.92.10- 13 1.11.10~2 1.67- 1011 1.55 . 10-11 4.99 . 10- 11

n
ma.x( > DY ) 7.77-107151.53-10-142.70- 10-13 1.80- 1012 1.72. 10~ 11 2.96 . 10~ 11 2,57 . 10~ 11

EP 2.18-10-123.04-10-11 8.93-1071° 5.65.10~9 7.51-10~7 2.82-10-% 5.93.10-5

n
ma.x( > Dﬁ) ) 1.82-107122.91-107119.31-1071° 4.61-107° 9.24-10~7 3.10-10~% 7.92.10-5
k

(1) 1.59-10~147.41.10~-14 1.86-10-13 7.08 - 1013 3.82 . 1012 7.09 - 10~ 12 3.66 . 10— 11

n
max ( 3. D§Y ) 6.44-10715 15310714 4.24.10-14 1.14 . 10-13 9.71. 10~ 13 1.75 . 10-12 3.25 . 10~ 11

f,i) 8.79-1071%3149.10"11 506 -10-1! 1.93-10°% 5.78-10~8 8.12-10~7 5.46-10-°

n
ma.x( > Dﬁ’ ) 5.40-107131.42-10712582-10"*! 1.12-10~° 1.97-10"8 591-10~7 2.04-10-6

Our experiments demonstrate that maintaining the relation (10) is more important than cal-
culating certain elements of the differentiation matrix precisely. It looks as if, as n increases,
preventing D(()g) and DY) from following the continuous deterioration of the other elements re-

sults in an “unbalanced” differentiation operator.

5. FURTHER COMPUTATIONAL EXAMPLES

In order to demonstrate that the above results are independent of the function whose deriva-
tives are approximated, we conclude with results for the derivatives of two other functions using
the standard formula (7) (denoted (1) in Tables 5 and 6), the trigonometric identities (12) (de-
noted (2)), the transform method (denoted (3)), the algorithm of Schneider and Werner (denoted
(4)) and finally the explicit formulas (14) and (15) with rearrangement (denoted (5)).
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The first example we used,
(z) = sin(8z)
= 1)

is that given in [9], slightly modified in order to avoid the value 0 at one of the extremities. The
errors in approximating the first two derivatives are presented in Table 5.

Table 5. Errors in approximating the first (top) and second (bottom) derivatives of
sin(8z)/(x + 1.1)3/2 using five different techniques.

n 16 32 64 128 256 512 1024

(1) | 596-10° 1.23.-1072 2.29.10"% 201-10"8 4.34-1077 5.58 . 1076 6.32-107°
(2) | 596-10° 1.23-10"2 221.10"% 1.17.10°° 4.43-108 5.36-10~8 2.45-10"°
(3) | 596-10° 1.23.10"2 222.10~% 1.09.10-10 381.1071®  357.107° 4.01-1078
(4) | 596-10° 123-1072 222.10"% 8.87.10"'2 9.09-10"'" 9.44.10"!' 275.10"10
(5) | 596-10° 1.23-10-2 222.10°% 2.07-10-11 498-10-11 183.10°1° 1.83.10°10
(1) | 115.10% 8.68-10°  6.27-1075  1.48.1074 1.27 - 10~2 5.58 - 1071 2.62- 10!
(2) | 115-10° 8.68-10° 6.10.1075  839.10"6 1.16-1073 8.94.1073 1.10 - 10°
(3) | 115-10% 868.10° 6.11-10°° 2.29-10-7  8.75.10°6 1.01-10—4 2.96-10—3
(4) | 1.15-10° 868-10°  6.11-10"5  3.04-10"8 1.80-10~6 1.67-10~° 7.07. 1075
(5) | 1.15-10% 8.68 - 10° 6.11-1075  5.01-10"8 1.63 1076 2.89-1075 1.81.10"4

For n = 16, 32, and 64, the results are almost the same with all techniques: the discretization
error dominates the calculation error. For larger n, the formulas of Schneider and Werner give
the best results for the approximations of the first two derivatives.

Our second example is

1
u(:c) = m

We have again calculated the approximation error for the first two derivatives. The results are
presented in Table 6.

Table 6. Errors in approximating the first (top) and second (bottom) derivatives of
1/(1 + z?) using the five different techniques.

n 16 32 64 128 256 512 1024

(1) | 1.70-10-5 2.85.10-1! 1.17.10"!1 3.21.10-1° 6.94.10-° 892.10~8  1.01.10-6
(2) | 1.70-1075 2.55-10-1! 1.93.10"12 205-10-1! 7.06-10-1° 853.10"10 3.93.10-8
(3) | 1.70.10"% 255.10-'1 165-1013 1.21.10-!2 398-10-'2 1.19.10-!1 3,08.10-10
(4) | 1.70-107% 2.55.10"'' 1.24.10"'® 295.10-'3 596-10"1% 1.74.10"12 155.10- 11
(6) | 1L.70-10-% 255.107'! 1.14-10-18 212.10-1 1.558.-10"'2 7.28.10-!2 3.41.10- 1!
(1) | 291-107% 1.87-10-% 251.10"% 235-10% 2.03.-107% 892.10~% 4.19.10-!
(2) | 291.107% 175.10% 244.10"° 1.38-10-7 1.84.10-5 1.45.10~4 1.76 - 10—2
(3) | 291-107% 1.74.10-8 868-10"!! 221.107° 1.18.10-7 596-10~7  3.31.10-5
(4) { 291-1073  1.74.10"% 1.32.1071° 477.10-° 300-10~° 1.34.10~7  3.55.10-6
(5) | 291-107% 1.74-10"% 1.16-10"1° 9.20-10"1 1.06-10-8  3.51-10-7  7.63.10-6

For the same reason as in Table 5, the first two columns are almost the same and, again, the
formulas of Schneider and Werner yield the best results.

6. CONCLUSION

We have discussed some errors incurred when calculating the pseudospectral differentiation ma-
trices for éeby§ev—Gauss—Lobatto points and we have suggested different methods for alleviating
these errors. The results are better than those obtained through the transform method.

To compute the derivative of a function in cases where the transform method is not adequate,
one should use method (ii). On the other hand, method (iii) is to be preferred for computing
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the differentiation matrices for solving time evolution problems with the method of lines or time
independent problems with iterative methods.

We were not aware of the article [16] at the time we performed the above computations.
Its authors use the trigonometric identities (12) in calculating the top half of the matrix D).

Then they notice that the relation DS_) ik = —Dﬁ) gives the bottom half of the matrix with

smaller cancellation error than (7). The results for the first derivative matrix are almost the
same as those displayed in the top half of Table 3. For the second derivative matrix (calculated

as D@ = (D(l))z), the improvement with respect to the bottom half of Table 1, where we also
used trigonometric identities, is a mere power of 10.
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