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Abstract

An algorithm for the generation of adaptive radial grids used in density functional theory or quantum chemical calcul
described. Our approach is general and can be applied for the integration over Slater or Gaussian type functions with o
modifications. The relative error of the integration is fully controlled by the algorithm within a specified range of expo
parameters and for a given principal quantum number.
 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Ab-initio quantum chemistry of polyatomic sy
tems has usually relied on fast evaluation of anal
formulas, made possible by the representation of
dial atomic orbitals as linear combinations of seve
Gaussian basis functions. This technique was firs
troduced by Boys[1] and developed into highly ef
ficient algorithms such as the McMurchie–Davids
method[2], Obara–Saika method[3,4] and the Rys
quadrature[5]. However the increasingly importa
density functional theory (DFT) requires systema
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evaluation of complicated integrals for which the
are no basis sets that allow simple closed formu
but whose integrals are easily evaluated at arbit
points in space. The first attempts to evaluate th
integrals were based on a partitioning of space
muffin-tin shaped regions or to use Monte-Carlo me
ods based on a smart sampling of the integration po
(Diophantine method). In 1988 Becke[6] had the
idea to use the resolution of identity

∑
i wi(r) = 1,

which is well known in the mathematical commun
and proposed the partitioningof polyatomic integrals
into single-center components, each of which be
evaluated using spherical coordinates. More elabo
schemes have been introduced since then: e.g., te
de and Baerends[7], Murray et al.[8], Treutler and
Ahlrichs [9] and recently Gill and Chien[10]. Never-
.
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theless, it seems that the errors introduced by the radia
integration are still unacceptably large in many ap
cations and are not easily controlled by the user.

However, a better choice would be an adaptive
tegration scheme which automatically generates
grid for a given accuracy. Thus the grids is autom
cally adapted to the basis set chosen for the calcula
and therefore reflects the shell structure of the ato
A heavy atom with more electrons requires a lar
grid. Also a larger basis set causes the generatio
a larger grid for a given tolerance. An early attem
for the construction of an adaptive grid generator
been proposed by Andzelm and Wimmer[11]. Re-
cently Pérez-Jordá et al.[12] presented an automat
numerical integration technique for molecules. Th
concluded that the available fixed grids are still neit
flexible nor effective enough for current calculation
Termath et al.[13] have used an adaptive integrati
scheme to generate optimized grid for their DFT mo
cular dynamics simulations. Krack and Koster[14]
have proposed a fully adaptive molecular grids g
erator. In their work they have determined the or
of the radial quadrature by an empirical interpolat
formula and the overlap matrix has been chosen
generating function for the angular grid. We can a
mention the hierarchical cubature (HiCu) by Chal
combe[15]. This interesting method achieves line
scaling computation of the exchange-correlation m
trix so important in DFT. Hierarchical cubature com
binesk-dimensional search treewith adaptive numer
ical integration involving an entirely Cartesian grid.

Lindh et al. [16] published in 2001 an articl
proposing a quadrature scheme for Gaussian Type
bitals (GTO) with exponentsα ∈ [αmin, αmax]. Our
purpose in this work is to present an extension
this idea for Slater Type Orbitals (STO). We descr
and justify the particular choice of integration va
ables and integration formulas, which together c
stitute the solution to the problem at hand: i.e. DF
There are indeed a growing number of computatio
chemists today who are using the ideas of DFT to
culate molecular properties. At the simplest level
Hohenberg–Kohn[17] theorem and the Kohn–Sha
[18] theories state that given an appropriate den
ρ(r), the exchange, correlation and kinetic energy c
rection contributions to the energy are given by

(1)I =
∫
R3

F
(
ρ(r),∇ρ(r), . . .

)
d3r,

whereF is a function of the densityρ(r). Most cer-
tainly F is of such a complicated form that it is n
possible to calculate the integral analytically. It
known, for example, that a good approximation to
exchange contribution is proportional toρ4/3(r), and
more accurate forms are morecomplicated. As far as i
knownF is differentiable almost everywhere. The b
havior ofF is governed by the behavior ofρ(r), which
for nearly all molecules has cusp shaped maxima a
nuclei and decreases to zero as|r| → ∞. The integral
I has normally been calculated by numerical quad
ture and the importance of doing this efficiently can
be over-estimated since it is usually the most time c
suming step in molecular applications. Many wo
ers have considered and used molecular grid qua
ture over the years. In the early days Boys and
jagopal[19] gave a scheme, which apportioned mo
cular space into atomic parts. Boys and Handy[20]
used this idea in their trans-correlated studies. S
grid points arose from solving a set of diophant
equations, a method originally due to Haselgrove[21].
More recently Friesner’s[22] success in his pseudo
spectral method depended upon the introduction
the molecular grids, which were again atom based
used radial Chebyshev points and small angular gr
Baerends and co-workers have used the method
posed by Ellis and Painter[23]. Boerrigter et al.[24]
later found that Gauss–Legendre quadrature[25] in the
r, θ andφ directions gave superior convergence as
number of quadrature points increased. Becke[6] gave
a straightforward partition of molecular space in
overlapping atomic fragments (fuzzy cells). He rec-
ommended the use of Gauss–Chebyshev quadr
[26] in radial direction and Stroud–Lebedev quad
ture[27–30]for the angular integration. Andzelm an
Wimmer [31] use this approach in their DGauss p
gram. Numerical integration has a number of adv
tages in electronic structure calculations, apart fr
that it provides a means of evaluating otherwise
tractable integrals: (i) It is in principle easy to apply
all integrals, such as matrix elements of the opera
in the one-electron Schrödinger equation. Moreo
numerical integration lends itself naturally to efficie
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vectorization and parallelization. (ii) As the requir
ment of analytic integrability is removed, one is fr
in the choice of basis functions (Slater-type orbita
numerical atomic functions, etc.). The difficulty to a
tain high accuracy has been a drawback of 3D inte
tion methods. It has been demonstrated that using
methods described next, it is possible to achieve
bitrarily high accuracy. It is fair to say, however, th
very high accuracy requires many integration points
An integration formula, in the volumeV , is defined by
N pointsri and weightswi such that

(2)
∫
V

f (r)d3r ≈
N∑

i=1

f (ri )wi.

In Newton–Cotes-type formulas (Trapezoidal ru
Simpson’s rule, etc.) the step size between two suc
sive grid points is constant. The advantage of this
ing an easy implementation of a quality controlled s
size adaptation like, e.g., in Romberg’s[25] method.
Another advantage of constant step size method
the exploitation of Euler–MacLaurin’s rule according
to which it is possible to expand the integration er
in a series of odd derivatives at the end points. T
idea is to find a variable transformation such that th
odd derivatives vanish constantly at the end poi
In Gaussian-type formulas the functionf is implic-
itly approximated by a finite expansion in polynomia
over the region of integration. The degree of precis
is d if the approximation off is exact for all polyno-
mials of degree smaller or equal tod , and not exact for
at least one polynomial of degreed + 1. The practical
precision depends then on whether the integrand
interest have rapidly converging expansions in poly
mials. With this type of methods an automatic qua
controlled step size adaptation is difficult.

In one dimension the problem can be conside
solved since the points and weights of formulas
any degree for an interval can routinely be compu
by well-established standard procedures. In two
mensions formulas of rather high degrees have b
published for regular polygons and the surface of
unit sphere. However the computation of these form
las is far to be straightforward, and in practice o
has to store the points and the weights as fixed
in the program, thus limiting the application to a fe
available degrees. Moreover, for regions that are
affinely related to those mentioned, a different so
tion has to be found. In three and more dimension
situation is even worse: only for a small number
special regions, like then-simplex, then-cube, and the
n-sphere, a few formulas are known.

The integral(1) is widely encountered in quantu
chemistry and can be rewritten in a general form a

(3)I =
∫
R3

f (r)d3r,

and it is generally convenient to transform(3) into
spherical polar coordinates to obtain the radial integ

(4)I =
∞∫

0

g(r)r2 dr,

where the factorr2 is the Jacobian arising from th
coordinate transformation and

(5)g(r) =
π∫

0

2π∫
0

f (r)sinθ dφ dθ

is the spherical average off (r).
As a model for the integration scheme, we w

along this work, study the integration of the functio

(6)

∞∫
0

um+2e−αu du = �(m + 3)

αm+3 , α > 0,

(7)

∞∫
0

um+2e−αu2
du = �((m + 3)/2)

2α(m+3)/2
, α > 0,

where we have introduced the Gamma function�(z) =∫ ∞
0 uz−1e−u du for �(z) > 0. We shall use the sho

hand notation

(8)Ii =
∞∫

0

Fi(u)du,

whereFi(u) = um+2e−αui
andi = 1,2.

In the following sections we present a method
the evaluation of radial integrals over either Slater ty
orbital (STO) or Gaussian type orbital (GTO) based
thesinc function.

In Section2 a brief introduction to thesinc function
is given, then in Section3 the method is presented fo
lowed by a study for each functions STO and GTO
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Section4, practical aspects are discussed and some
amples are given to demonstrate the efficiency of
method. Finally we make some conclusive remarks

2. The sinc function

Letf be a complex valued function on the real ax
and suppose we would like to interpolatef between a
bi-infinite sequence of equidistant points onR. With-
out loss of generality, we can assume these interp
tion points to be

(9)xk = kh, −∞ < k < ∞, h > 0.

Assuming that the series converges, the interpola
problem is most simply solved by the (Whittaker) car-
dinal function

(10)C(f,h)(x) :=
∞∑

k=−∞
fkS(k,h)(x),

whereS(k,h) is given byS(k,h)(x) := S[π
h
(x − xk)],

S(x) is the so-calledsinc-function

(11)S(x) := sin(x)

x

and fk = f (xk). SinceS(0) = 1 andS(kπ) = 0 for
all nonzero integersk, C(f,h) interpolatesf between
thexk (asS(k,h)(x) is a translation (up to a factor) o
S(x)).

Interesting features of the cardinal function are
ease of being differentiated and integrated and th
fore its ability to approximate the derivative or th
integral of a functionf . In the differentiation case, th
derivative of the function at a pointx is approximated
as

(12)f ′(x) ≈ C(f,h)′(x) =
∞∑

k=−∞
fkS(k,h)′(x).
More interesting in the present settings: if the se
C(f,h) converges uniformly, one has the followin
approximation for the integration off :

∞∫
−∞

f (x)dx ≈
∞∫

−∞

∞∑
k=−∞

fkS(k,h)(x)dx

=
∞∑

k=−∞
fk

∞∫
−∞

S(k,h)(x)dx.

A straightforward computation leads to

∞∫
−∞

S(k,h)(x)dx = h

and hence

(13)

∞∫
−∞

f (x)dx ≈ h

∞∑
k=−∞

fk,

which is nothing but the trapezoidal integration rule
In the present article, we want to approximate

integral of functions which are defined on the sem
infinite interval [0,∞). By applying the following
transformation of variableu = ψ(x) = ex (seeFig. 1),
we obtain

(14)

∞∫
0

f (u)du =
∞∫

−∞
f

(
u(x)

)
ex dx,

and by using the approximate trapezoidal integra
rule, one gets

∞∫
0

f (u)du =
∞∫

−∞
f

(
u(x)

)
ex dx

(15)≈ h

∞∑
k=−∞

f (exk )exk .
Fig. 1. The domainDZ andDW .
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We cannot directly use the last (bi-infinite) sum for a
proximating integrals of function on a computer. O
has to do another approximation by truncating the
infinite sum
∞∫

0

f (u)du ≈ h

∞∑
k=−∞

f (exk )exk

(16)≈ h

N∑
k=−M

f (exk )exk .

Once these two approximations have been made, s
practical questions arise:

• How good is this approximation to the integral
the functionf ?

• How do we select the step sizeh, the limiting
termsM andN in the sum?

• Is it possible to design an automatic procedure
obtain a certain relative precision in the numeri
computation of a given integral?

In this work, we want to usethis classical trapezoida
integration rule to approximate the integral of STO
well as of GTO.

3. Numerical integration

In order to answer the questions raised in the p
ceding section, we shall review some important res
given by Lund and Bowers[32] or by Stenger[33].

Let us first define the domain

(17)

DW = {
w ∈ C: w = reiθ , |θ | < d � π/2, r ∈ R

+}
which is the domain presented on the left-hand sid
Fig. 1. Our aim is to compute (numerically and as p
cisely as possible) the integral

∫ ∞
0 f (u)du of a given

functionf which is analytic in the domainDW .
The following theorem stated in Lund and Bow

ers [32] and Stenger[33] yields an integration rule
(16) (namely a truncated trapezoidal rule), a stepsize
h (22), a limiting termN (21) and an (absolute) erro
estimate(23)

Theorem 1. Let f be analytic in DW where the angle
of the wedge opening is d (0 < d � π/2),
∫
−d

∣∣f (reiθ )
∣∣r dθ =O

(| ln r|a),
(18)r → 0+,∞, 0 � a < 1,

and

(19)lim
r→0+,R→∞

R∫
r

∣∣f (ρeid)
∣∣dρ < ∞.

Further assume that there are positive constants γ , η,
and C so that

(20)
∣∣f (u)

∣∣ � C

{
uγ−1, u ∈ (0,1),

u−η−1, u ∈ [1,∞).

If the selections

(21)N =
[∣∣∣∣γη M + 1

∣∣∣∣
]

and

(22)h =
(

2πd

γM

)1/2

� 2πd

ln2

are made, then the absolute error (AE) is given by:

AE =
∣∣∣∣∣

∞∫
0

f (u)du − h

N∑
k=−M

ekhf (ekh)

∣∣∣∣∣
(23)=O

(
exp

(−√
2πdγM

))
.

Where [·] stands for the nearest integer value. T
selection ofN in (21)is for technical accuracy as me
tioned by Lund and Bowers[32].

In general, the exact calculation of integrals(18)
and(19)is quite difficult and one does not do their ca
culations before implementing the rule(23). Rather, if
the integrandf is analytic in a sector of the right ha
plane (angle of openingd) and integrable on rays i
this sector, then this angled defines, via(22), a suit-
able mesh size. The exponents in(20)refer only to the
behavior off on the half line.

Onceγ , η, d andM are known all other quanti
ties in the theorem can be computed and one obt
a practical and fairly simple quadrature rule!γ , η and
d depend on the function one wants to integrate
M depends on the desired precision one wishe
achieve.

The performance of the preceding (z = φ(w) =
ln(w)) quadrature rule may be improved with resp
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tegrand exhibits exponential decay at infinity

(24)
∣∣f (u)

∣∣ � C

{
uγ−1, u ∈ (0,1),

e−ηu, u ∈ [1,∞).

Then, the upper limit of the number of integrati
nodes can be significantly reduced by selecting

(25)N =
[∣∣∣∣1

h
ln

(
γ

η
Mh

)
+ 1

∣∣∣∣
]
.

The exponential convergence of the approximated
is maintained with this alternative selection ofN as
verified by Lund and Bowers[32].

In (25), N may become negative for very large va
ues ofη. An elementary computation yieldsN = 0,
when η = γMheh. By slightly modifying the trans-
formationz = φ(w) = ln(w) to z = φ(w) = ln(w/c)

with a given constantc > 0, Eq.(25) is changed to

(26)N =
[∣∣∣∣1

h
ln

(
γ

ηc
Mh

)
+ 1

∣∣∣∣
]

and hence the parameterc can be chosen according

(27)c = γMheh

η

and the numerical integration rule will be given by

(28)ch

N∑
k=−M

ekhf (cekh).

This slight modification of the integration rule wi
help us to control the (relative) error growth in t
computation of STO and GTO integrals.

3.1. Slater type orbital

Remember that we want to compute numericall

(29)I1 =
∞∫

0

F1(u)du

with F1(u) = um+2e−αu. In this case, one has clearl

(30)
∣∣F1(u)

∣∣ � C1

{
uγ−1, u ∈ (0,1),

e−ηu, u ∈ [1,∞),

and the angle of the wedge openingd1 is π/2.
Therefore, the step sizeh1, the parameterc1 as well
as the upper limitN1 are given by

h1 = π

√
1

M1(m + 3)
,

c1 = M1(m + 3)h1eh1

αmax
and

N1 =
[∣∣∣∣ 1

h1
ln

(
M1(m + 3)h1

αminc1

)
+ 1

∣∣∣∣
]
.

Remember that we want to compute the integral ofF1
for a fixedm and a range ofα ∈ [αmin, αmax], hence
one has to takeαmax for c1 andαmin for N1.

3.2. Gaussian type orbital

Here we want to compute numerically

(31)I2 =
∞∫

0

F2(u)du

with F2(u) = um+2e−αu2
. In this case, one has

(32)
∣∣F2(u)

∣∣ � C2

{
uγ−1, u ∈ (0,1),

e−ηu2
, u ∈ [1,∞),

and the angle of the wedge openingd2 is π/4.
Presently the exponential decay at infinity is greate
than in the STO case and the different parameters
given by:

h2 = h1√
2
,

c2 = eh2

√
M2(m + 3)h2

αmax
and

N2 =
[∣∣∣∣ 1

2h2
ln

(
M2(m + 3)h2

αminc
2
2

)
+ 1

∣∣∣∣
]
.

The last result can be derived in the same way a
Lund and Bowers[32].

4. Practical aspects

In this section we will illustrate how to obtain
closed relation for a fully adaptive radial grid bas
on the STO and GTO functions, namelyFi(u) =
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Fig. 2. Linear fits of the data sets log(RE1(M1)) in function ofM1/2
1

for different values ofm = 0,10 and 25.

um+2e−αui
, wherei = 1,2. All the calculations pre

sented in this article were obtained with double pre
sion floating-point numbers using 64 bits arithmetic

As the error bound given for the evaluation of t
integral(23) cannot be evaluated in an easy way, o
has to find an empirical function which will allow u
to compute the number of pointsMi as a function of
the desired precisionREi and for a givenm. For this
purpose we have chosen a model function (which
inspired by the error bound(23)) of the type

REi (Mi,m) = AEi (Mi,m)

|Ii |
(33)= Ki(m)eAi(m)

√
Mi , i = 1,2,

Ki(m) and Ai(m) are the empirical parameters th
need to be determined. Here we have supposed
the absolute errorAEi is a function of onlyMi and
m and does not depend on the range of expon
[αmin, αmax]. In Fig. 2 we have plotted the logarithm
of Eq. (33) for the STO function for three differen
values ofm = 0,10 and 25 as a function of the squa
root ofMi . The data have been selected to lie in a re
tive error range between 10−5 to about 10−14. We see
that the exponential parametrization is a good mo
since the exponential decay of the relative errorREi

is obeyed. Similar results were obtained for the G
functions.

Now the dependence inm can be introduced, af
ter a simple inspection of the data sets. A cubic
of the functions ln(K1(m)), A1(m), ln(K2(m)) and
t

Fig. 3. Cubic fits of the data sets ln(K1(m)) andA1(m) in function
of m ∈ [0,25].

Fig. 4. Cubic fits of the data sets ln(K2(m)) andA2(m) in function
of m ∈ [0,25].

A2(m) provides good estimates. The data and the
are shown inFigs. 3 and 4for the STO and GTO
functions, respectively. It is clear that other kind of
functions could have been used. In particular a po
nomial function in square root ofm would have been
a suitable choice to fitA1(m) andA2(m) as expected
from Eq.(23).

The following cubic fit parameters are obtained
STO

ln
(
K1(m)

) = 0.51140· 101 + 0.89374· 100m

− 0.24021· 10−1m2

(34)+ 0.19798· 10−3m3,

and
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Fig. 5. Logarithm of the relative errorRE1 as a function of the STO
exponent form = 0 and α ∈ [10−1,10−5]. The number of grid
points is given by the fits equations(34) and (35)for desired ac-
curacies of 10−5, 10−10 and 10−15.

A1(m) = 0.49252· 101 + 0.49056· 100m

− 0.17392· 10−1m2

(35)+ 0.24255· 10−2m3,

and for GTO

ln
(
K2(m)

) = 0.31380· 101 + 0.69068· 100m

− 0.18635· 10−1m2

(36)+ 0.27219· 10−3m3,

and

A2(m) = 0.36841· 101 + 0.41281· 100m

− 0.14211· 10−1m2

(37)+ 0.22970· 10−2m3,

for any power 0� m � 25. These empirical param
ters can then be used to evaluate the number of po
needed to obtain a given accuracyREi for a given ex-
ponentm through the general relation

Mi(REi ,m) =
(

ln

(
REi

Ki(m)

)
1

Ai(m)

)2

,

(38)i = 1,2.

In Figs. 5, 6 and 7we have used the fitted func
tions (34)–(35) to estimate the number of poin
M1(RE1,m) needed to integrate the STO function f
different accuraciesRE1 = 10−5,10−10 and 10−15,
and for different values ofm = 0,10 and 25. In
some cases, the relative errorRE1 was “exactly zero”
Fig. 6. Logarithm of the relative errorRE1 as a function of the STO
exponent form = 10 andα ∈ [10−1,10−5]. The number of grid
points is given by the fits equations(34) and (35)for desired accu-
racies of 10−5, 10−10 and 10−15.

Fig. 7. Logarithm of the relative errorRE1 as a function of the STO
exponent form = 25 andα ∈ [10−1,10−5]. The number of grid
points is given by the fits equations(34) and (35)for desired accu-
racies of 10−5, 10−10 and 10−15.

(within the double precision floating-point arithmeti
and for convenience those errors were set to 10−18. We
can observe a discrepancy of only one order of ma
tude in the case wherem = 25 andRE1 = 10−15 (see
Fig. 7) when using the fitted functions(34)–(35). Sim-
ilar results were obtained for the numerical integrat
of the GTO function based on the fitted functions(36)–
(37).

We also present inTable 1 the total number o
grid pointsNTot(RE,m) = M + N + 1 for a given
accuracyRE = 10−12 and with the exponent rang
α ∈ [10−1,105] for different values ofm. The number
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Table 1
Number of grid pointsNTot = N + M + 1 needed to integrate GTO
and STO functions within a relative errorRE = 10−12 with the ex-
ponent rangeα ∈ [10−1,105] for different values ofm

m GTO STO

Lindha Present Lindhb Present

0 102 116 91 96
1 90 108 87 95
2 85 103 86 94

10 – 92 – 98
25 – 100 – 118

a Lindh et al.[16].
b Lindh et al.[16] quadrature adapted for STO (seeAppendix A).

of points for the GTO integrations are compared w
the results proposed by Lindh et al.[16]. We have also
derived the STO equivalent of the Lindh et al. quad
ture (seeAppendix A).

As we can see inTable 1, the total number of point
NTot(RE,m) for a givenRE is slightly higher for our
method than for Lindh et al.[16] method. However
our method covers a bigger range ofm and does no
suffer from solving nonlinear equations to find the o
timal parameters.

5. Conclusion

An algorithm for the generation of radial grids th
are needed in density functional theory or quant
chemical calculations has been described. From a
computational point of view it is not trivial to giv
“useful” expressions for the unknown parametersK1
andK2 although analytical relations exist[32]! But,
we could show that a simple analysis of the behav
of the number of pointMi with respect to the relativ
error andm can lead to a very simple parameterizati
We have also shown that these compact relations
valid for a large range of relative errors and parame
m up to 25 without affecting the stability of the relativ
accuracy. Of course, this large range ofm covers al-
most the whole need of computational chemistry. T
the method introduced in this paper can be used f
large range of exponentsα andm with a full control of
the relative error in these ranges. It is worth menti
ing that the method is not limited to the STO or GT
functions. Thus a family of optimal quadrature form
las for approximating the integralI = ∫

D f (x)dx, in
the domainD, can be derived[34]. The integrandf (x)

may even have singularities at the end points of inte
gration. In a future work adaptive three-dimensio
grid and Poisson equation solver based on thesinc
function will be addressed elsewhere.
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Appendix A. Lindh based quadrature rule for
STO function

In this appendix, we follow Lindh[16] and presen
the important relations needed for the quadrature
based on the STO function

(A.1)

RD = 2
√

2π

(m + 2)!
(

2π

h

)m+5/2

e−π2/h
(
1+O(h)

)
.

This relation(A.1) is very similar to Eq.(18)given by
Lindh [16]. The upper bound of the integralI1 can be
calculated exactly as

RL = αm+3
min

(m + 2)!
∞∫

xN

mm+2e−αminx dx

(A.2)= e−αminxN

m+2∑
i=0

xi
Nαi

min

i! ,

and the lower bound is given by

RH = αm+3
max

(m + 2)!
x1∫

0

mm+2e−αmaxx dx

(A.3)= 1− e−αmaxx1

m+2∑
i=0

xi
1α

i
max

i! .

Given a specific powerm and a required relative erro
RE the parameterh is found for a given discretizatio
errorRD = RE. The most diffuse function(αmin) de-
termines the outermost pointxN such thatRL = RE.
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The function with the largest exponentαmax deter-
mines the pointx1 such thatRH = RE. From these
parameters we obtain

c = x1/(e
h − 1) and N = ln(1+ xN/c)/h.
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