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Abstract

An algorithm for the generation of adaptive radial grids used in density functional theory or quantum chemical calculations is
described. Our approach is general and can be applied for the integration over Slater or Gaussian type functions with only minor
modifications. The relative error of the integration is fully controlled by the algorithm within a specified range of exponential
parameters and for a given principal quantum number.
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1. Introduction evaluation of complicated integrals for which there
are no basis sets that allow simple closed formulas,
Ab-initio quantum chemistry of polyatomic sys- but whose integrals are easily evaluated at arbitrary
tems has usually relied on fast evaluation of analytic POINts in space. The first attempts to evaluate those
formulas, made possible by the representation of ra- INt€grals were based on a partitioning of space into
dial atomic orbitals as linear combinations of several Muffin-tin shaped regions or to use Monte-Carlo meth-
Gaussian basis functions. This technique was first in- 045 based on asmart sampling of the integration points
troduced by Boyq1] and developed into highly ef- gg)lophantlnehmethOtdl). In 1?83 BecKé] had the
ficient algorithms such as the McMurchie—Davidson laea t‘? use the reso ution of | ent@;i wi(r) =1, .
method[2], Obara—Saika methof8,4] and the Rys which is well known m_t_he.mathematlcall cpmmumty
quadrature[5]. However the increasingly important and proposed the partitionirg polyatomic integrals

: : . . into single-center components, each of which being
density functional theory (DFT) requires systematic ; . .
y y( ) req y evaluated using spherical coordinates. More elaborate

schemes have been introduced since then: e.g., te Vel-
* Corresponding author. de and Baerend¥], Murray et al.[8], Treutler and
E-mail address: valery.weber@unifr.ctfV. Weber). Ahlrichs [9] and recently Gill and ChieflL0]. Never-
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theless, it seems that therers introduced by the radial ~ rection contributions to the energy are given by

integration are still unacceptably large in many appli-

cations and are not easily controlled by the user. 1= / F(p(r), Vo(r),.. ) d*r, (1)
However, a better choice would be an adaptive in- R3

tegration scheme which automatically generates the

gr||(|j fo(rja ?“;e? ?r(]:cubrac_y. TTui the gfrldstr:s aulton|1aty— tainly F is of such a complicated form that it is not
cally adapted o the basis set chosen for the calcula Iorlpossible to calculate the integral analytically. It is

and therefore ref!ects the shell structure pf the atoms. known, for example, that a good approximation to the
A heavy atom with more electrons requires a larger exchange contribution is proportional p4/3(r), and
grid. Also a larger basis set causes the generation of \ore accurate forms are maremplicated. As far as is

a larger grid for a given tolerance. An early attempt known F is differentiable almost everywhere. The be-
for the construction of an adaptive grid generator has havior of F is governed by the behavior pir), which
been proposed by Andzelm and Wimniéd]. Re- for nearly all molecules has cusp shaped maxima at the
cently Pérez-Jorda et dll2] presented an automatic nuclei and decreases to zerojals— co. The integral
numerical integration technique for molecules. They 7 has normally been calculated by numerical quadra-
concluded that the available fixed grids are still neither ture and the importance of doing this efficiently cannot
flexible nor effective enough for current calculations. P€ over-estimated since itis usually the most time con-
Termath et al[13] have used an adaptive integration SUMINg step in molecular applications. Many work-
scheme to generate optimized grid for their DFT mole- €S have considered and used molecular grid quadra-
cular dynamics simulations. Krack and Kosfa#] ture over the years. In the early days Boys and Ra-
have proposed a fully adaptive molecular grids gen- Jagopal[19] gave a scheme, which apportioned mole-

erator. In their work they have determined the order cular space |nt9 atomlc parts. Boys and Ha. f2g)]
. S . used this idea in their trans-correlated studies. Such
of the radial quadrature by an empirical interpolation

, grid points arose from solving a set of diophantine
formula and the overlap matrix has been chosen as equations, a method originally due to Haselgrfa.

generating function for the angular grid. We can also \jqre recently Friesnerf22] success in his pseudo-
mention the hierarchical cubature (HiCu) by Challa- spectral method depended upon the introduction of
combe[15]. This interesting method achieves linear the molecular grids, which were again atom based. He
scaling computation of the exchange-correlation ma- used radial Chebyshev points and small angular grids.
trix so important in DFT. Hierarchical cubature com- Baerends and co-workers have used the method pro-
binesk-dimensional search tregith adaptive numer-  posed by Ellis and Paint¢23]. Boerrigter et al[24]
ical integration involving an entirely Cartesian grid. later found that Gauss—Legendre quadraf2s¢in the
Lindh et al. [16] published in 2001 an article r, ¢ and¢ directions gave superior convergence as the
proposing a quadrature scheme for Gaussian Type Or-number of quadrature points increased. Beékgave
bitals (GTO) with exponents € [emin, max]. OUr a straigh_tforward_partition of molecular space into
purpose in this work is to present an extension of ©Verlapping atomic fragmentsizzy cells). He rec-

this idea for Slater Type Orbitals (STO). We describe ommended the use of Gauss—Chebyshev quadrature

S . . . . . [26] in radial direction and Stroud-Lebedev quadra-
and justify the particular choice of integration vari- . .
: ) . ture[27-30]for the angular integration. Andzelm and
ables and integration formulas, which together con-

. h Ui h bl hand: i.e. DET Wimmer[31] use this approach in their DGauss pro-
stitute the _SO ution to t e_ problem at hand: i.e. °* 7 gram. Numerical integration has a number of advan-
There are indeed a growing number of computational 5ges in electronic structure calculations, apart from

chemists today who are using the ideas of DFT to cal- hat it provides a means of evaluating otherwise in-
culate molecular properties. At the simplest level the tractable integrals: (i) It is in principle easy to apply to
Hohenberg—Kohif17] theorem and the Kohn-Sham  aj| integrals, such as matrix elements of the operators
[18] theories state that given an appropriate density in the one-electron Schrédinger equation. Moreover
p(r), the exchange, correlation and kinetic energy cor- numerical integration lends itself naturally to efficient

where F is a function of the density(r). Most cer-
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vectorization and parallelization. (ii) As the require-
ment of analytic integrability is removed, one is free
in the choice of basis functions (Slater-type orbitals,
numerical atomic functions, etc.). The difficulty to at-
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tion has to be found. In three and more dimension the
situation is even worse: only for a small number of
special regions, like the-simplex, the:-cube, and the
n-sphere, a few formulas are known.

tain high accuracy has been a drawback of 3D integra-  The integral(1) is widely encountered in quantum
tion methods. It has been demonstrated that using thechemistry and can be rewritten in a general form as
methods described next, it is possible to achieve ar-
I= / fndr,
R3

bitrarily high accuracy. It is fair to say, however, that
and it is generally corenient to transform(3) into

very high accuracy requiresany integration points.
spherical polar coordinates to obtain the radial integral

®3)

An integration formula, in the volumeg, is defined by
N pointsr; and weightaw; such that

N
¥ ~ (row;. 2 7
v/f r ;f w (2) I=/g(r)r2dr, @)
0

In Newton—Cotes-type formulas (Trapezoidal rule,
Simpson’s rule, etc.) the step size between two succes-where the factor? is the Jacobian arising from the
sive grid points is constant. The advantage of this be- coordinate transformation and

ing an easy implementation of a quality controlled step

size adaptation like, e.g., in Romber¢b] method. .

Another advantage of constant step size methods is8 () = / / f(r)sing dg do
the exploitation of Euler—McLaurin’s rule according 00

to which it is possible to expand the integration error s the spherical average ¢fr).
in a series of odd derivatives at the end points. The  As a model for the integration scheme, we will,
idea is to find a variable transformation such that these along this work, study the integration of the functions
odd derivatives vanish constantly at the end points.

T 2w

(5)

In Gaussian-type formulas the functighis implic- A2, —au C(m+3)

itly approximated by a finite expansion in polynomials u" e du = T gmt3 >0, (6)

over the region of integration. The degree of precision 0

is d if the approximation off is exact for all polyno- o0

mials of degree smaller or equaldpand not exact for ym2eman® g, — % >0, (7)
o

at least one polynomial of degréet 1. The practical
precision depends then on whether the integrands of )
interest have rapidly converging expansions in polyno- Where we have introduced the Gamma functigg) =
mials. With this type of methods an automatic quality Jo #°~ € "du for 9i(z) > 0. We shall use the short
controlled step size adaptation is difficult. hand notation

In one dimension the problem can be considered 00
solved since the points and weights of formulas of j, =
any degree for an interval can routinely be computed
by well-established standard procedures. In two di- ,
mensions formulas of rather high degrees have beenwhereF; (u) = umt2eau’ gndi =1, 2.
published for regular polygons and the surface of the  In the following sections we present a method for
unit sphere. However the computation of these formu- the evaluation of radial integrals over either Slater type
las is far to be straightforward, and in practice one orbital (STO) or Gaussian type orbital (GTO) based on
has to store the points and the weights as fixed datathesinc function.
in the program, thus limiting the application to a few In Section2 a brief introduction to theinc function
available degrees. Moreover, for regions that are not is given, then in Sectiol the method is presented fol-
affinely related to those mentioned, a different solu- lowed by a study for each functions STO and GTO. In

F;(u) du, (8)



136

Sectiord, practical aspects are discussed and some ex-

amples are given to demonstrate the efficiency of the
method. Finally we make some conclusive remarks.

2. Thesinc function

Let f be a complex valued function on the real axis,
and suppose we would like to interpolgtebetween a
bi-infinite sequence of equidistant points BnWith-
out loss of generality, we can assume these interpola-
tion points to be

xx=kh, —o00o<k<oo, h>D0.

(9)

Assuming that the series converges, the interpolation—

problem is most simply solved by th@é/tittaker) car-
dinal function
o0
C(f,h)(x):= Z JiS(k, h)(x), (10)
k=—o00
whereS(k, h) is given byS(k, h)(x) := S[7 (x — x)],
S(x) is the so-calledinc-function

(11)

and f; = f(xx). SinceS(0) =1 and S(kwr) = 0 for
all nonzero integerk, C(f, h) interpolatesf between
thexy (asS(k, h)(x) is a translation (up to a factor) of
S(x)).

Interesting features of the cardinal function are its
ease of being differentiated and integrated and there-
fore its ability to approximate the derivative or the
integral of a functionf. In the differentiation case, the
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More interesting in the present settings: if the series
C(f, h) converges uniformly, one has the following
approximation for the integration gf:

/ D fiStk, h)(x)dx

—00 k=—00

/ F)dea

= Z fk/S(k,h)(x)dx.
k=—00

—00

A straightforward computation leads to

Sk,h)(x)dx =h
and hence
/f(x)dmh > e (13)
—00 k=—00

which is nothing but the trapezoidal integration rule.
In the present article, we want to approximate the

integral of functions which are defined on the semi-

infinite interval [0, co). By applying the following

transformation of variable = ¢ (x) = e* (seeFig. 1),

we obtain

/ f(u)du= / f(u(x))ex dx, (14)
0 —00

and by using the approximate trapezoidal integration
rule, one gets

o0 o0

derivative of the function at a pointis approximated / f(u)du = / f(u(x))e" dx
as o N
o0 o0
FeCn @= Y fiSkh'x). (12 ~hoy o feer. (15)
k=—o00 k=—o00
iv iy
w-space z-space |
id
d " :: ' Dw W= W(Z) = exp(z) ’,' ", ”i ”i ”: ": :. :: ; :, :: d
Y gw) = In(w) fiiiDy X
—id

Fig. 1. The domairD and Dy .
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We cannot directly use the last (bi-infinite) sum for ap- ”
proximating integrals of function on a computer. One /|f(re' )|rdo =0O(|Inr|?),
has to do another approximation by truncating the bi- 4

infinite sum r— 0t 00, 0<a<1, (18)
T ad and
/f(u)du ~ho) o fEh)en .
° o i d9)|d 19
N HOJ’H)HOOf!f(p )| dp < o0. (19
~h Yy fet)et. (16) r
ke M Further assume that there are positive constants y, n,

Once these two approximations have been made, some?nd C so that
practical questions arise: |f(u)| <c { w1 ue(),
ST lu uelt oo).
e How good is this approximation to the integral of |t iha selections
the functionf?
e How do we select the step siZe the limiting N HZM"'lu 1)

(20)

termsM andN in the sum? n
e Is it possible to design an automatic procedure to gnq

obtain a certain relative precision in the numerical

computation of a given integral? h= ( (22)

2rd\Y? 27d
o) <z
In this work, we want to usthis classical trapezoidal  are made, then the absolute error (AE) is given by:
integration rule to approximate the integral of STO as

o0 N
well as of GTO. AE — /f(u) du—h Z et ek
0 k=—M
3. Numerical integration = O(exp(—y/27dy M)). (23)

In order to answer the questions raised in the pre- Where [-] stands for the nearest integer value. The
ceding section, we shall review some important results selection ofV in (21)is for technical accuracy as men-
given by Lund and Bower82] or by Stengef33]. tioned by Lund and Bowel82].

Let us first define the domain In general, the exact calculation of integréis3)

] i0 i and(19)is quite difficult and one does not do their cal-
Dy ={weCw=re |6l <d<m/2 reR"] culations before implementing the ry23). Rather, if

(17) the integrandf is analytic in a sector of the right half
which is the domain presented on the left-hand side of plane (angle of openind) and integrable on rays in
Fig. 1 Our aim is to compute (numerically and as pre- this sector, then this angté defines, via22), a suit-
cisely as possible) the integrﬁcj"’ f(u)du of a given able mesh size. The exponent¢20)refer only to the
function f which is analytic in the domaifyy . behavior off on the half line.

The following theorem stated in Lund and Bow- Oncey, n, d and M are known all other quanti-
ers[32] and Stengef33] yields an integration rule ties in the theorem can be computed and one obtains
(16) (namely a truncated trapeidal rule), a stepsize  a practical and fairlyisnple quadrature ruley, n and
h (22), a limiting termN (21)and an (absolute) error  d depend on the function one wants to integrate and

estimatg23) M depends on the desired precision one wishes to
achieve.
Theorem 1. Let f be analyticin Dy where the angle The performance of the preceding € ¢ (w) =

of the wedge openingisd (0 <d < /2), In(w)) quadrature rule may be improved with respect
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to the number of function evaluations. Assume the in-  Therefore, the step siZa, the parameter, as well
tegrand exhibits exponential decay at infinity as the upper limitvy are given by

v=1 " we(0,1), 1
() <c{“ 24 _ 1
1] e, uell 00). - hi=n Mi(m +3)°

Then, the upper limit of the number of integration My(m + 3)hie
cl=——

nodes can be significantly reduced by selecting a and
max
1 M
N=[£|n(ZMh)+1H. (25) N1=[—|n<M>+1H.
h n h1 OminC1

The exponential convergence of the approximated sum Remember that we want to compute the integratpf
is maintained with this alternative selection &f as for a fixedm and a range ol € [omin, @maxl, hence

verified by Lund and Bower82]. one has to takemay for c1 andamin for Ni.
In (25), N may become negative for very large val-
ues ofn. An elementary computation yieldg = 0, 3.2. Gaussian type orbital
whenn = y Mhe!. By slightly modifying the trans-
formationz = ¢ (w) = In(w) to z = ¢(w) = In(w/c) Here we want to compute numerically
with a given constant > 0, Eq.(25)is changed to ~
N = [ E|n<th> +1H (26) IZZ/FZ(”)d” (31)
h nc 0

and hence the parametecan be chosen accordingto i Fo(u) = M2 | this case, one has

y Mhe" w1 ue (1)
c= (27) Fo(u)| < Cz{ ' T 32
U | | e’ el 00), (32)
and the numerical integration rule will be given by and the angle of the wedge openiag is /4.
N Presently the exponentiakday at infinity is greater
ch Z e £ (cekhy. (28) than in the STO case and the different parameters are
k=—M given by:
This slight modification of the integration rule will = hy
help us to control the (relative) error growth in the J2'

computation of STO and GTO integrals. Mo + 3
cp =gz PR TINZ ony
3.1. Sater type orbital Omax

No— 1 In Mo(m + 3)hy 1
Remember that we want to compute numerically 2= 2hs 2 4

¥minCs

o0 The last result can be derived in the same way as in
I = f Fi(u)du (29) Lund and Bower$32].
0

with Fy(u) =« 2=, In this case, one has clearly 4. practical aspects

u’l ue(0,1),

(30) In this section we will illustrate how to obtain a
e ™,  uell 00),

closed relation for a fully adaptive radial grid based
and the angle of the wedge openihgis /2. on the STO and GTO functions, namel («) =

|Fru)| < Cl{
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20 T T T T T

4+ O m=0 i
— Linear Fit
O m=10 i 2 5r 1
--- Linear Fit =
~ O m=25 =z
g - Linear Fit g 10k eEe 4
B0 =
- 1 £
i = In(K  (m))
- 5F — Cubic Fit A
| O A(m)
—- Cubic Fit
| | | | | L 1 1 1 1 1
16— 4 5 6 7 S 5 10 15 20 25
M 172 m

Fig. 2. Linear fits of the data sets Id®E1 (M1)) in function ofM%/2

Fig. 3. Cubic fits of the data sets(lki1 (mm)) and A1 (m) in function

of m € [0, 25].

for different values ofn = 0, 10 and 25.

15 T T T T T T T T T T T

u"t2e~2u' ‘'wherei = 1, 2. All the calculations pre-
sented in this article were obtained with double preci-
sion floating-point numbers using 64 bits arithmetic.
As the error bound given for the evaluation of the
integral(23) cannot be evaluated in an easy way, one
has to find an empirical function which will allow us
to compute the number of poinid; as a function of
the desired precisioRE; and for a giverm. For this

S
T

In(K,(m)) and A (m)
T

O In(K,(m) 7
— Cubic Fit

, L A
purpose we have chosen a model function (which is o Cfl(bl?c)Fit
inspired by the error boun@3)) of the type T

AE; (M ) 0 0 5 10 m 15 20 25
RE; (M;, m) = nEiMi. m)
|1;] Fig. 4. Cubic fits of the data sets(lkix(m)) and A2 (m) in function

=K; (m)eAz (’")\/ﬁi’ of m € [0, 25].

K;(m) and A;(m) are the empirical parameters that

need to be determined. Here we have supposed thatA2(m) provides good estimates. The data and the fits
the absolute erroAE; is a function of onlyM; and are shown inFigs. 3 and 4for the STO and GTO
m and does not depend on the range of exponentsfunctions, respectively. It is clear that other kind of fit
[amin, @max]- In Fig. 2we have plotted the logarithm  functions could have been used. In particular a poly-
of Eq. (33) for the STO function for three different nomial function in square root af would have been
values ofm = 0, 10 and 25 as a function of the square @ suitable choice to fitt1(m) and A2(m) as expected
root of M;. The data have been selected to lie in a rela- from Eq.(23).

tive error range between 1Bto about 1014, We see The following cubic fit parameters are obtained for
that the exponential parametrization is a good model STO

since the exponential decay of the relative eifR&; o @
is obeyed. Similar results were obtained for the GTO In(K1(m)) = 051140 10" + 0.89374 10°m
—0.24021: 10~ 1m?

functions.
+0.19798 10 3m2,

i=12 (33

Now the dependence im can be introduced, af-
ter a simple inspection of the data sets. A cubic fit
of the functions IKy(m)), A1(m), In(K2(m)) and

(34)

and
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log(RE))

1 1 1
1eH)3 1e+06 1e+09
o.[aun]

1 1
1e-03 1e+00

Fig. 5. Logarithm of the relative errd®E; as a function of the STO
exponent form = 0 and« € [10~1,107°]. The number of grid
points is given by the fits equatior{f84) and (35)for desired ac-
curacies of 10°, 10719 and 10715,

A1(m) = 0.49252 10! + 0.49056 10°m
—0.17392- 10 1m?

+0.24255 102m®, (35)
and for GTO
In(K2(m)) = 0.31380 10" + 0.69068 10°m
—0.18635 10~ 1m?
+0.27219 103m3, (36)
and
Az(m) = 0.36841: 10" + 0.41281- 10°m
—0.14211. 10" 'm?
+0.22970 102m3, (37)

for any power 0< m < 25. These empirical parame-

V. Weber et al. / Computer Physics Communications 163 (2004) 133-142

log(RE,)

1 1 1
1e+03 1e+06 1e+09
o [au.]

1 1
1e-03 1e+00
Fig. 6. Logarithm of the relative errd®E; as a function of the STO
exponent form = 10 ande € [10~1, 1075]. The number of grid
points is given by the fits equatiorf84) and (35Yor desired accu-
racies of 10°, 10~10 and 10°15.

S b oo W

log(RE,)

-10
-12
-14
16 -
-18

1 ] ]
le+03 1e+06 le+09

o [au.]

| 1
1e-03 Te+00
Fig. 7. Logarithm of the relative err&®E; as a function of the STO
exponent form = 25 ande e [10~1, 107°]. The number of grid

points is given by the fits equatiorf84) and (35Yor desired accu-
racies of 16>, 1010 and 10715,

ters can then be used to evaluate the number of points

needed to obtain a given accurdRly; for a given ex-
ponentn through the general relation

RE; 1 \?
Mi(REi,m)z (In( > > N
Ki(m) ) A;(m)

i=12 (38)

In Figs. 5, 6 and 7we have used the fitted func-
tions (34)«35) to estimate the number of points
M1(RE1, m) needed to integrate the STO function for
different accuracieRE; = 107,109 and 1015,
and for different values ofn = 0,10 and 25. In
some cases, the relative eriRiE; was “exactly zero”

(within the double precision floating-point arithmetic)
and for convenience those errors were set to'30Ne

can observe a discrepancy of only one order of magni-
tude in the case where = 25 andRE; = 10~ 1° (see
Fig. 7) when using the fitted functior{84)-35). Sim-

ilar results were obtained for the numerical integration
of the GTO function based on the fitted functi¢86)-
(37).

We also present iMable 1the total number of
grid points NT°YRE, m) = M + N + 1 for a given
accuracyRE = 10712 and with the exponent range
« € [1071, 10°] for different values ofz. The number
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Table 1

Number of grid points’VTOt = N+ M + 1 needed to integrate GTO
and STO functions within a relative errBE = 10~12 with the ex-
ponent ranger € [10~2, 10°] for different values ofn

m GTO STO
Lindh2 Present LindR Present
0 102 116 91 96
1 90 108 87 95
2 85 103 86 94
10 - 92 — 98
25 — 100 - 118

@ Lindh et al.[16].
b Lindh et al.[16] quadrature adapted for STO (s&ppendix A).

of points for the GTO integrations are compared with
the results proposed by Lindh et Hl6]. We have also
derived the STO equivalent of the Lindh et al. quadra-
ture (seAppendix A).

As we can see iffiable 1 the total number of points
NTOYRE, m) for a givenRE is slightly higher for our
method than for Lindh et a[16] method. However,
our method covers a bigger rangemfand does not
suffer from solving nonlinear equations to find the op-
timal parameters.

5. Conclusion

An algorithm for the generation of radial grids that

are needed in density functional theory or quantum

141

the domainD, can be derivefB4]. The integrandf (x)
may even have singularitie$ the end points of inte-
gration. In a future work adaptive three-dimensional
grid and Poisson equation solver based on dime
function will be addressed elsewhere.
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Appendix A. Lindh based quadraturerulefor
STO function

In this appendix, we follow Lindfil6] and present
the important relations needed for the quadrature rule
based on the STO function

221 (2n\"¥?
D= (mT\/_Z)‘(7> e’ /h(1+ Oh)).
(A.1)
This relation(A.1) is very similar to Eq(18) given by
Lindh [16]. The upper bound of the integral can be

calculated exactly as

o0
chemical calculations has been described. From a pure L= aﬁﬁ fmm+267aminx dx
computational point of view it is not trivial to give (m +2)!
“useful” expressions for the unknown paramet&is w
and K> although analytical relations exig32]! But, I il
we could show that a simple analysis of the behavior = Z TR (A-2)

of the number of poind4; with respect to the relative
error andn can lead to a very simple parameterization.

We have also shown that these compact relations are
valid for a large range of relative errors and parameters

m up to 25 without affecting the stability of the relative
accuracy. Of course, this large rangenofcovers al-

most the whole need of computational chemistry. Thus
the method introduced in this paper can be used for a

large range of exponentsandm with a full control of
the relative error in these ranges. It is worth mention-
ing that the method is not limited to the STO or GTO
functions. Thus a family of optimal quadrature formu-
las for approximating the integrdl= fD f(x)dx, in

i=0
and the lower bound is given by

am+3 "
g = max ‘/mm+ze*amaxx dx
(m+2)!
0

m+2

lai
= 1 — e_amaxxl m

. (A.3)
i!

i=0
Given a specific power. and a required relative error
RE the parametet is found for a given discretization
error Rp = RE. The most diffuse functioomin) de-
termines the outermost poinfy such thatR; = RE.



142

The function with the largest exponeafax deter-
mines the pointv; such thatRy = RE. From these
parameters we obtain

c=x1/(" —=1) and N=In(L+xy/c)/h.
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