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EXPONENTIAL CONVERGENCE
OF A LINEAR RATIONAL INTERPOLANT

BETWEEN TRANSFORMED CHEBYSHEV POINTS

RICHARD BALTENSPERGER, JEAN-PAUL BERRUT, AND BENJAMIN NOËL

Abstract. In 1988 the second author presented experimentally well-condi-
tioned linear rational functions for global interpolation. We give here arrays of
nodes for which one of these interpolants converges exponentially for analytic
functions

Introduction

Let f be a complex function defined on an interval I of the real axis and let
x0, x1, . . . , xn be n + 1 distinct points of I, which we do not assume equidistant or
ordered. Let fk := f(xk), k = 0(1)n. Then

Pn[f ](x) :=
n∑

k=0

fkLk(x), Lk(x) :=
n∏

j=0,j 6=k

x− xj

xk − xj
,(1)

is the Lagrangian representation of the unique polynomial of degree at most n
interpolating f between the points xk, k = 0(1)n.

Introducing the notations [Sch]

λk :=
1∏

j 6=k

(xk − xj)
, k = 0(1)n,(2)

and

L(x) := (x− x0)(x − x1) · · · (x− xn),(3)

we can rewrite (1) as

Pn[f ](x) = L(x)
n∑

k=0

λk

x− xk
fk.(4)

Pn[f ] can also be written in its barycentric form by making use of the relation

1 = L(x)
n∑

k=0

λk

x− xk
.(5)
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Indeed, dividing (4) by (5) we obtain

Pn[f ](x) =

n∑
k=0

λk

x− xk
fk

n∑
k=0

λk

x− xk

,(6)

which is one of the most stable formulas for evaluating Pn[f ] [Hen, Ber1].
For several arrays of points the λk (which are called weights of the barycentric

formula) can be simplified. For example, for the Chebyshev points of the first kind

xk := cos(φk), φk :=
2k + 1
n + 1

π

2
, k = 0(1)n,(7)

Pn[f ] becomes

Pn[f ](x) =

n∑
k=0

(−1)k sin(φk)
x− xk

fk

n∑
k=0

(−1)k sin(φk)
x− xk

.(8)

And for the Chebyshev points of the second kind

xk := cos(φk), φk :=
kπ

n
, k = 0(1)n,(9)

one has

λk =
2n−1

n
(−1)kδk, k = 0(1)n,(10)

with

δk :=
{

1/2, xk = −1 or xk = 1,
1, otherwise,(11)

which gives the remarkably simple formula of Salzer [Sal]

Pn[f ](x) =

n∑
k=0

′′
(−1)k

x− xk
fk

n∑
k=0

′′
(−1)k

x− xk

,(12)

where the ′′ means that the first and the last terms of the sum are to be multiplied
by 1/2.

Global rational interpolation is known to give better results than polynomial
interpolation in some examples. But the traditional rational interpolation problem
(find a rational function Rn[f ] with the same number of coefficients as the number
of interpolation points) has two major flaws:

• In some cases the interpolation condition Rn[f ](xk) = f(xk) cannot be satis-
fied: So-called “unattainable points” occur [Sto].

• Rn[f ] can have poles in the interval of interpolation, and those poles make
the interpolation with Rn[f ] useless if f is not singular at the same points.
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In Section 1, we recall the rational function proposed in [Ber1] and we derive it
in an alternate way by interpolating two functions of two variables. In Section 2, we
prove its exponential convergence when interpolating between conformally trans-
formed Chebyshev points. This result is confirmed by numerical experiments (Sec-
tion 3), which also demonstrate that such a shift of the Chebyshev points often
improves the precision of the calculated derivatives as compared with those of the
polynomial interpolating between Chebyshev points.

1. A linear rational interpolant

Let us denote by En+1 := {xk : k = 0(1)n} a set of distinct points in the interval
[−1, 1] and define the numbers

ηk :=



√
1− x2

k, −1 6∈ En+1, 1 6∈ En+1,√
1
2 (1 + x2

k), −1 6∈ En+1, 1 ∈ En+1,√
1
2 (1 − x2

k), −1 ∈ En+1, 1 6∈ En+1,

1, −1 ∈ En+1, 1 ∈ En+1.

(13)

In [Ber1] the second author proposed a new, experimentally well-conditioned linear
rational interpolant without poles in the interval of interpolation.

Theorem 1. The rational function

Rn[f ](x) :=

n∑
k=0

(−1)kδkηk

x− xk
fk

n∑
k=0

(−1)kδkηk

x− xk

,(14)

where fk := f(xk) and where the δk and the ηk are given in the formulas (11) and
(13), interpolates f between the points xk, k = 0(1)n, and does not have any pole
in the interval [−1, 1].

Notice that, according to (8) and (10), Rn[f ] coincides with the interpolating
polynomial when the xk’s are Chebyshev points (see [Ber1]).

1.1. Study of the rational interpolant. In the present subsection we recon-
struct the rational function (14) as the quotient of two interpolants, using the same
technique as in [Ber2].

Let I, J be two intervals in R, let g be a conformal map from a domain D1 in C
containing J to another domain D2 containing I and such that g(J) = I, and let
f be a complex function defined on the interval I. Without loss of generality, set
J = [−1, 1].

We define xk := g(yk), where the yk, k = 0(1)n, are the Chebyshev points of
the second kind in J , and we study the rational interpolant (14) of the function
f : I → C between the xk.

Let w : D1 ×D1 → C be the analytic function of two variables [Kau-Kau]

w(z, y) :=
z − y

g(z)− g(y)
.

In order to interpolate f ◦ g on the interval J , we write it as

f(g(y)) =
f(g(y))w(z, y)

w(z, y)
,(15)
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where (z, y) ∈ J×J , and we approximate both the numerator and the denominator
of (15) by their interpolating polynomials between the Chebyshev points of second
kind.

For the sake of interpolating w(z, y) we freeze the variable z and we construct
the polynomial interpolating w(z, y) between the n + 1 Chebyshev points of the
second kind yk = cos(kπ

n ),

Pn[w](z, y) =
n∑

k=0

w(z, yk)Lk(y) =
2n−1

n
L(y)

n∑
k=0

′′
(−1)k

y − yk
w(z, yk).

When z = y 6= yk this yields

Dn[w](y) := Pn[w](y, y) =
2n−1

n
L(y)

n∑
k=0

′′
(−1)k

g(y)− g(yk)
,(16)

and the approximated function now is w(y, y) := lim
z→y

w(z, y) = 1
g′(y) . Dn[w](y) (as

a function of y) is no longer a polynomial. If we repeat the same operation for
the numerator of the right hand side of (15), we obtain a function Nn[(f ◦ g)w](y)
interpolating f(g(y)) 1

g′(y) :

Nn[(f ◦ g)w](y) :=
2n−1

n
L(y)

n∑
k=0

′′
(−1)k

g(y)− g(yk)
f(g(yk)).(17)

By forming the quotient of (17) and (16), we obtain the following interpolant of
f ◦ g:

Rn[f ◦ g](y) :=
Nn[(f ◦ g)w](y)

Dn[w](y)
=

n∑
k=0

′′
(−1)k

g(y)− g(yk)
f(g(yk))

n∑
k=0

′′
(−1)k

g(y)− g(yk)

.(18)

With x := g(y) and xk := g(yk) this is precisely the rational function (14) for
(conformally) transformed Chebyshev points. This new interpretation will allow us
to prove the exponential convergence of (14) for analytic f .

The above construction can be performed for other points, such as transformed
Chebyshev points of the first kind.

2. Convergence

Here we use results on the convergence of polynomials interpolating between
Chebyshev points to prove the convergence of (14) between transformed Chebyshev
points.

2.1. Convergence of the polynomial interpolating between Chebyshev
points. The following two results can be found in [Boy, p. 139], and [Riv, p. 141],
respectively.

Theorem 2. Let {ak} denote the exact coefficients in the Chebyshev series of f ,
that is,

f(x) =
a0

2
+

∞∑
k=1

akTk(x), ak :=
2
π

1∫
−1

f(x)Tk(x)
dx√

1− x2
,
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where the Tk(x) are the Chebyshev polynomials of the first kind. Then the polyno-
mial Pn[f ] interpolating f between Chebyshev points of first or second kind satisfies

|f(x)− Pn[f ](x)| ≤ 2
∞∑

k=n+1

|ak|

for all real x and for all n.

The second theorem recalls that if f is the restriction of an analytic function on
[−1, 1], then the coefficients ak decay exponentially.

Theorem 3. If f is analytic inside and on the ellipse Cρ, ρ > 1, with foci at ±1,
and if the sum of the major and minor axes of Cρ is equal to 2ρ, then

|ak| ≤ 2M

ρk
,

where M := max
z∈Cρ

|f(z)|.

For a function f analytic in the interior and on an ellipse Cρ (⊂ D1), ρ > 1, the
preceding two theorems yield

|f(x)− Pn[f ](x)| ≤ 4M

∞∑
k=n+1

ρ−k =
4M

ρn(ρ− 1)
,(19)

for all real x and for all n.

2.2. Exponential convergence of the rational interpolant. We now come to
the main result of the present work.

Theorem 4. Let D1, D2 be two domains of C containing J = [−1, 1], respectively
I (∈ R), let g be a conformal map D1 → D2 such that g(J) = I, and f be a function
D2 → C such that the composition f ◦ g : D1 → C is analytic inside and on an
ellipse Cρ (⊂ D1), ρ > 1, with foci at ±1 and with the sum of its major and minor
axes equal to 2ρ. Let Rn[f ](x) ≡ Rn[f ◦ g](y), x = g(y), be the rational function
(14) interpolating f between the transformed Chebyshev points xk := g(yk). Then,
for every x ∈ [−1, 1],

|f(x)−Rn[f ](x)| = O(ρ−n).(20)

Proof. Let us apply the results of Section 2.1 to Pn[w](z, y). For every fixed z,
Pn[w](z, y) is the polynomial interpolating w between the Chebyshev points of
second kind and, in view of the analyticity of w : D1 ×D1 → C, we have

|w(z, y)− Pn[w](z, y)| ≤ 4M1(z)
ρ̃n(ρ̃− 1)

,

where M1(z) := max
y∈Cρ̃

|w(z, y)| and Cρ̃ (ρ̃ ≥ ρ) is the largest among all ellipses Cσ

contained in D1 with foci at ±1 and with the sum of their axes equal to 2σ.
Defining M1 := max

z∈D1
M1(z) = max

z∈D1,y∈Cρ̃

|w(z, y)|, this yields a bound for the

error of the interpolant Dn[w](y):

|w(y, y)−Dn[w](y)| ≤ 4M1

ρ̃n(ρ̃− 1)
.
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Since f◦g is analytic inside and on the ellipse Cρ, we similarly find for Nn[(f◦g)w](y)

|(f ◦ g)(y)w(y, y)−Nn[(f ◦ g)w](y)| ≤ 4M2

ρn(ρ− 1)
,

where M2 := max
z∈D1,y∈Cρ

|(f ◦ g)(y)w(z, y)|.
Since g, conformal on D1, is continuous on Cρ, we have min

y∈Cρ

|w(y, y)| > 0 and

we can divide numerator and denominator by w(y, y), which yields for the rational
interpolant Rn[f ](x)

Rn[f ◦ g](y) =
Nn[(f ◦ g)w](y)

Dn[w](y)
=

(f ◦ g)(y)w(y, y) +O(ρ−n)
w(y, y) +O(ρ̃−n)

=
(f ◦ g)(y) +O(ρ−n)

1 +O(ρ̃−n)
= (f ◦ g)(y) +O(ρ−n).

3. Numerical examples

Here we displace the interpolation points with the mapping proposed by Kosloff
and Tal-Ezer [Kos-Tal]

g(y) := g(y, α) :=
arcsin(αy)
arcsin(α)

, y ∈ [−1, 1], α ∈ (0, 1).(21)

In the limit α = 0 the interpolation points xk := g(yk) remain the Chebyshev points
(of second kind), whereas they become equidistant when α → 1. The derivative of
g has singularities at ±1/α. When α → 1 these singularities approach the interval
of interpolation.

In order to quantify the displacement of the interpolation points, we give in
Table 1 the quotient hmin

hmax
, where hmin and hmax respectively denote the minimal

and the maximal distances between the points. For the Chebyshev points the ratio
is O(1/n); for equidistant points it trivially equals 1.

We have interpolated two test functions on the interval [−1, 1], both with the
polynomial interpolating between the Chebyshev points of the second kind and with
the rational function (14) for different α. As a measure of the interpolation error,

Table 1. Ratio
hmin

hmax

n

α 8 32 128 512
0 1.99 · 10−1 4.91 · 10−2 1.23 · 10−2 3.07 · 10−3

0.1 2.00 · 10−1 4.94 · 10−2 1.23 · 10−2 3.08 · 10−3

0.5 2.26 · 10−1 5.67 · 10−2 1.42 · 10−2 3.54 · 10−3

0.9 3.92 · 10−1 1.11 · 10−1 2.81 · 10−2 7.04 · 10−3

0.94 4.64 · 10−1 1.41 · 10−1 3.59 · 10−2 8.99 · 10−3

0.98 6.19 · 10−1 2.34 · 10−1 6.14 · 10−2 1.54 · 10−2

0.99 7.07 · 10−1 3.14 · 10−1 8.64 · 10−2 2.17 · 10−2

1 1 1 1 1
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we have calculated the maximum among the absolute errors at the 1000 equidistant
points x̂k := −1 + 2k+1

1000 , k = 0(1)999. The results are presented in Tables 2 and 3.
In a further experiment we have approximated the first and the second derivatives

of these two functions with a formula given in [Sch-Wer] and we have calculated the
maximal absolute error at the interpolation points xk. The corresponding results
are presented in Tables 4, 5, 6, and 7.

In all the tables, α = 0 refers to the polynomial (12) and the other α’s to
the rational function (14). All the computations were done on a PowerMacintosh
8200/120.

3.1. Interpolation. As the first example we chose Runge’s classical example

f(x) :=
1

1 + 25x2
.(22)

Table 2 shows that the rational function yields better results than the polyno-
mial as long as α is not too close to 1. The exponential convergence reflects the
analyticity of f .

The second example was

k(x) := sin(100x)e−5x.(23)

k oscillates a great deal on the interval [−1, 0]; these oscillations are damped on
the interval [0, 1]. k is entire, and therefore the polynomial (12) interpolating
between the Chebyshev points of the second kind as well as the rational function
(14) converge exponentially toward k (see Table 3).

Table 2. Interpolation error for f

n

α 8 32 128 512
0 2.05 · 10−1 1.62 · 10−3 8.65 · 10−12 3.33 · 10−15

0.1 2.04 · 10−1 1.60 · 10−3 8.28 · 10−12 3.89 · 10−15

0.5 1.90 · 10−1 1.21 · 10−3 2.53 · 10−12 3.22 · 10−15

0.9 1.35 · 10−1 3.49 · 10−4 1.55 · 10−14 3.55 · 10−15

0.94 1.23 · 10−1 2.43 · 10−4 4.05 · 10−15 3.11 · 10−15

0.98 1.03 · 10−1 1.28 · 10−4 1.11 · 10−15 2.89 · 10−15

0.99 9.42 · 10−2 9.34 · 10−5 3.66 · 10−13 2.00 · 10−15

1 7.34 · 10−2 7.12 · 10−5 7.17 · 10−6 4.49 · 10−7

Table 3. Interpolation error for k

n

α 8 32 128 512
0 2.21 · 102 1.59 · 102 1.06 · 10−7 1.34 · 10−12

0.1 2.21 · 102 1.61 · 102 8.22 · 10−8 1.28 · 10−12

0.5 1.87 · 102 1.81 · 102 5.42 · 10−11 1.42 · 10−12

0.9 1.71 · 102 1.99 · 102 1.37 · 10−12 1.47 · 10−12

0.94 2.00 · 102 1.91 · 102 1.11 · 10−12 1.65 · 10−12

0.98 1.49 · 102 1.80 · 102 2.38 · 10−9 1.26 · 10−12

0.99 1.89 · 102 1.99 · 102 3.42 · 10−6 1.34 · 10−12

1 1.84 · 102 1.80 · 102 1.51 · 101 6.92 · 10−1
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Tables 2 and 3 seem to demonstrate that when n is large and increasing the
optimal α moves closer to 1. A possible explanation is the fact that, for constant α,
the points remain further from equidistant as n increases (see the decrease of hmin

hmax
in

Table 1), which results in not as good a sampling of the function. This phenomenon
is even accentuated in the computation of derivatives, where the condition of the
problem improves as the spacing of the point becomes more regular (see the tables
in Section 3.2).

We also clearly see that the rational interpolant converges much more slowly for
equidistant points (α = 1) than for the others. We conjecture that the convergence
of Rn[f ] is merely O(n−2). However, for moderate n (say n ≤ 32) the regular
sampling results in a better approximation.

3.2. Differentiation. We now recall a formula for the differentiation of rational
functions. For that purpose, notice that every rational function Rn[f ] interpolating
a function f between the points xk can be written in its barycentric form

Rn[f ](x) =

n∑
k=0

uk

x− xk
fk

n∑
k=0

uk

x− xk

(24)

[Ber-Mit], where fk := f(xk) and where the uk are the barycentric weights of the
rational interpolant.

In order to calculate the derivatives of a rational function written in such a form
we use the following results of Schneider and Werner [Sch-Wer].

Proposition 1. Let Rn[f ] be a rational function given in its barycentric form (24),
with uk 6= 0, k = 0(1)n. Assume that ξ is not a pole of Rn[f ]; then for ξ 6= xk, k =
0(1)n,

R
(m)
n [f ](ξ)

m!
=

n∑
k=0

uk

ξ − xk
Rn[f ] [(ξ)m, xk]

/
n∑

k=0

uk

ξ − xk
, m ≥ 0,(25)

and

R
(m)
n [f ](xi)

m!
= −

 n∑
k=0,k 6=i

ukRn[f ] [(xi)m, xk]

/
ui, 0 ≤ i ≤ n, m ≥ 1.

(26)

The notation (ξ)m is used here to indicate the m-fold argument ξ, ξ, . . . , ξ, and
Rn[f ] [x0, . . . , xk] denotes the k-th order divided difference of Rn[f ] with

Rn[f ][ξ, . . . , ξ︸ ︷︷ ︸
m+1

] =
R

(m)
n [f ](ξ)

m!
.

Making use of formula (26), we can compute the first two derivatives of the function
(24) at the interpolation points xi by constructing the differentiation matrices D(1)
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and D(2), whose entries are given by

D
(1)
ij =


uj

ui

1
xi − xj

, i 6= j,

−
n∑

k=0,k 6=i

uk

ui

1
xi − xk

, i = j,
(27)

respectively

D
(2)
ij =


2D

(1)
ij

(
D

(1)
ii − 1

xi − xj

)
, i 6= j,

2
(
D

(1)
ii

)2

+ 2
n∑

k=0,k 6=i

D
(1)
ik

1
xi − xk

, i = j.
(28)

Indeed, by multiplying the vector f of the values fk of f at the interpolation points
by the matrix D(1) we obtain the vector f ′ of the first derivative of the rational
function (24) at the same points: f ′ = D(1)f . Doing the same for the matrix D(2),
we obtain the second derivative at the interpolation points, f ′′ := D(2)f . Higher
derivatives can be similarly computed with formula (26).

3.2.1. First derivative. The derivative of the functions (22) and (23) will now be
approximated at the interpolation points. For the polynomial interpolating between
the Chebyshev points yk = cos(kπ

n ), we use the formulas for the differentiation
matrix D(1) given in books on spectral methods like [Boy],

D
(1)
ij =

ci

cj

(−1)i+j

yi − yj
, (i 6= j),

D
(1)
jj = − yj

2(1− y2
j )

, (j 6= 0, n), D
(1)
00 =

2n2 + 1
6

= −D(1)
nn ,

(29)

with c0 = cn = 2 and ck = 1 for k = 0(1)n. For the rational function, we use (27).
The approximation results for f ′ are presented in Table 4.

From 128 to 512 points the approximation with the interpolating polynomial
does not improve. As explained in [Bal-Ber1], the main reason for this is believed
to be the extreme precision of the elements D

(1)
00 and D

(1)
nn as compared with the

other elements of the differentiation matrix.

Table 4. Approximation error for f ′

n

α 8 32 128 512
0 1.37 · 100 5.44 · 10−2 1.13 · 10−9 6.86 · 10−9

0.1 1.37 · 100 5.39 · 10−2 1.08 · 10−9 1.20 · 10−12

0.5 1.36 · 100 4.19 · 10−2 3.47 · 10−10 2.15 · 10−12

0.9 1.25 · 100 1.38 · 10−2 2.47 · 10−12 1.82 · 10−12

0.94 1.21 · 100 1.01 · 10−2 6.01 · 10−13 2.91 · 10−12

0.98 1.14 · 100 5.80 · 10−3 2.89 · 10−14 5.71 · 10−13

0.99 1.10 · 100 4.37 · 10−3 6.79 · 10−11 7.69 · 10−13

1 9.78 · 10−1 3.59 · 10−3 1.44 · 10−3 3.61 · 10−4
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Table 5. Approximation error for k′

n

α 8 32 128 512
0 1.13 · 104 1.31 · 104 2.51 · 10−5 8.30 · 10−9

0.1 1.13 · 104 1.31 · 104 2.01 · 10−5 6.07 · 10−8

0.5 1.26 · 104 1.24 · 104 1.28 · 10−8 5.15 · 10−8

0.9 1.31 · 104 1.31 · 104 1.73 · 10−9 5.16 · 10−8

0.94 1.22 · 104 1.43 · 104 7.80 · 10−10 2.95 · 10−8

0.98 1.37 · 104 1.39 · 104 4.58 · 10−7 1.70 · 10−8

0.99 1.26 · 104 1.45 · 104 2.23 · 10−3 1.29 · 10−8

1 1.27 · 104 1.28 · 104 3.91 · 103 8.63 · 102

As in the case of the interpolation, the approximation with the rational function
(14) behaves like the approximation with the polynomial (12) and is even better in
most cases.

The derivative of the rational function interpolating between equidistant points
(α = 1) converges toward the derivative of f at the rate O(n−1), losing a power of
n in the course of the differentiation.

The results for the derivative

k′(x) = 5e−5x(20 cos(100x)− sin(100x))

of the function (23) are comparable with those for (22). The approximation is
not as good for small n, however, because k′ oscillates a great deal on the interval
[−1, 0] (see Table 5).

3.2.2. Second derivative. We use a similar procedure to compute the error in ap-
proximating

f ′′(x) = 50(75x2 − 1)/(1 + 25x2)3.

We calculate the differentiation matrix D(2) by the formulas (28) for the rational
function (14), but we make use of the relation D(2) = [D(1)]2 for the polynomial
interpolating between the Chebyshev points [Boy]. Again, the error with the poly-
nomial (12) does not improve when the number of points increases from 128 to 512.
In fact it becomes even worse, which can be explained in the same way as for the
first derivative [Bal-Ber1].

The error does not always improve for the rational function (14) either, but
the worsening effect is attenuated. For α = 1, the approximation of the second
derivative is O(1) (see Table 6).

The accuracy of the approximation of

k′′(x) = −25e−5x(40 cos(100x) + 399 sin(100x))

by the second derivative of (14) loses at least one power of n. As α → 1, the
approximation becomes disastrous. However, as long as α is not too close to 1, the
approximation remains accurate for sufficiently large n. For n = 128 the improve-
ment with respect to the polynomial interpolating between the Chebyshev points
is remarkable (see Table 7).
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Table 6. Approximation error for f ′′

n

α 8 32 128 512
0 5.29 · 101 2.85 · 101 9.33 · 10−6 6.86 · 10−4

0.1 5.26 · 101 2.81 · 101 9.08 · 10−6 1.15 · 10−6

0.5 4.65 · 101 2.00 · 101 2.64 · 10−6 3.28 · 10−7

0.9 2.77 · 101 3.99 · 100 1.17 · 10−8 8.01 · 10−8

0.94 2.63 · 101 2.38 · 100 2.33 · 10−9 1.73 · 10−7

0.98 2.40 · 101 8.71 · 10−1 6.97 · 10−11 2.61 · 10−8

0.99 2.30 · 101 4.95 · 10−1 1.17 · 10−7 3.11 · 10−9

1 2.01 · 101 1.18 · 10−1 1.95 · 10−1 1.97 · 10−1

Table 7. Approximation error for k′′

n

α 8 32 128 512
0 9.30 · 105 2.71 · 106 2.74 · 10−1 1.21 · 10−3

0.1 9.20 · 105 2.60 · 106 2.19 · 10−1 4.58 · 10−3

0.5 8.74 · 105 5.86 · 105 1.26 · 10−4 1.95 · 10−3

0.9 8.83 · 105 4.67 · 106 3.09 · 10−6 2.38 · 10−3

0.94 8.74 · 105 2.81 · 106 9.65 · 10−7 6.04 · 10−4

0.98 8.84 · 105 8.00 · 105 8.48 · 10−4 3.76 · 10−4

0.99 8.78 · 105 1.04 · 106 5.00 · 100 2.45 · 10−4

1 8.78 · 105 8.78 · 105 3.74 · 105 5.37 · 105

Conclusion

We have shown the exponential convergence of the rational function (14) pre-
sented in [Ber1] for conformally transformed Chebyshev points. Making use of the
formula given in [Sch-Wer], we have also calculated its first two derivatives at the
interpolation points, which in many instances are significantly more precise than
those of the polynomial interpolating between Chebyshev points.

In a future work, we intend to use these rational interpolants for solving partial
differential equations [Bal-Ber2].

Acknowledgments

The authors wish to thank the unknown referee whose comments have improved
the text of the present paper.

References

[Bal-Ber1] Baltensperger, R. and Berrut, J.-P.: The errors in calculating the pseudospectral
differentiation matrices for Chebyshev-Gauss-Lobatto points, to appear in Comput.
Math. Applic.

[Bal-Ber2] Baltensperger, R. and Berrut, J.-P.: The linear rational collocation method, submitted
for publication.

[Ber1] Berrut, J.-P.: Rational functions for guaranteed and experimentally well-conditioned
global interpolation, Comput. Math. Applic., 15, 1-16 (1988). MR 89b:65029

[Ber2] Berrut, J.-P.: Barycentric formulae for cardinal (SINC-) interpolants, Numer. Math.,
54, 703-718 (1989) (Erratum 55, 747 (1989)). MR 90d:65025a,b



1120 RICHARD BALTENSPERGER, JEAN-PAUL BERRUT, AND BENJAMIN NOËL
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